| A. | 1 | B. | $\frac{3}{4}$ | C. | $\frac{\sqrt{3}}{2}$ | D. | $\frac{\sqrt{3}}{3}$ |
分析 如圖所示,不妨設(shè)等邊△ABC的邊長為2,M為△ABC內(nèi)一動(dòng)點(diǎn),∠BMC=120°.點(diǎn)M在弦BC所對(duì)的弓形$\widehat{BMC}$上,∠BQC=120°.由圖可知:當(dāng)點(diǎn)M取與y軸的交點(diǎn)時(shí),∠MBC=30°,可得:Q$(0,-\frac{\sqrt{3}}{3})$,A$(0,\sqrt{3})$,C(1,0),M(x,y).設(shè)參數(shù)方程為:$\left\{\begin{array}{l}{x=\frac{2\sqrt{3}}{3}cosθ}\\{y=-\frac{\sqrt{3}}{3}+\frac{2\sqrt{3}}{3}sinθ}\end{array}\right.$,$\frac{|MA{|}^{2}}{|MC{|}^{2}}$=$\frac{{x}^{2}+(y-\sqrt{3})^{2}}{(x-1)^{2}+{y}^{2}}$=$\frac{5-4sinθ}{2-\sqrt{3}cosθ-sinθ}$=t,化為:sin(θ+β)=$\frac{5-2t}{\sqrt{(4-t)^{2}+(\sqrt{3}t)^{2}}}$≤1,解出即可得出.
解答
解:如圖所示,
不妨設(shè)等邊△ABC的邊長為2,
∵M(jìn)為△ABC內(nèi)一動(dòng)點(diǎn),∠BMC=120°,
∴點(diǎn)M在弦BC所對(duì)的弓形$\widehat{BMC}$上,∠BQC=120°.
由圖可知:當(dāng)點(diǎn)M取與y軸的交點(diǎn)時(shí),∠MBC=30°,
可得:Q$(0,-\frac{\sqrt{3}}{3})$,A$(0,\sqrt{3})$,C(1,0),M(x,y).
點(diǎn)M所在圓的方程為:${x}^{2}+(y+\frac{\sqrt{3}}{3})^{2}$=$\frac{4}{3}$.
設(shè)參數(shù)方程為:$\left\{\begin{array}{l}{x=\frac{2\sqrt{3}}{3}cosθ}\\{y=-\frac{\sqrt{3}}{3}+\frac{2\sqrt{3}}{3}sinθ}\end{array}\right.$,
∴$\frac{|MA{|}^{2}}{|MC{|}^{2}}$=$\frac{{x}^{2}+(y-\sqrt{3})^{2}}{(x-1)^{2}+{y}^{2}}$=$\frac{\frac{4}{3}co{s}^{2}θ+(-\frac{4\sqrt{3}}{3}+\frac{2\sqrt{3}}{3}sinθ)^{2}}{(\frac{2\sqrt{3}}{3}cosθ-1)^{2}+(-\frac{\sqrt{3}}{3}+\frac{2\sqrt{3}}{3}sinθ)^{2}}$=$\frac{5-4sinθ}{2-\sqrt{3}cosθ-sinθ}$=t,
化為:sin(θ+β)=$\frac{5-2t}{\sqrt{(4-t)^{2}+(\sqrt{3}t)^{2}}}$≤1,
解得t≥$\frac{3}{4}$,
∴$\frac{|MA|}{|MC|}$$≥\frac{\sqrt{3}}{2}$.
故選:C.
點(diǎn)評(píng) 本題考查了等邊三角形的性質(zhì)、圓的性質(zhì)、直角三角形的邊角關(guān)系、三角函數(shù)的單調(diào)性、和差公式,考查了推理能力與計(jì)算能力,屬于中檔題.
| 年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
| 高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
| 高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
| 高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
| 規(guī)格類型 鋼板類型 | A規(guī)格 | B規(guī)格 | C規(guī)格 |
| 第一種鋼板 | 2 | 1 | 1 |
| 第二種鋼板 | 1 | 2 | 3 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
國際學(xué)校優(yōu)選 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com