分析 (1)由題意利用正弦函數(shù)的圖象的對稱性可得φ的值.
(2)由條件利用正弦函數(shù)的單調(diào)性求得函數(shù)f(x)的單調(diào)遞減區(qū)間.
(3)由條件利用正弦函數(shù)的定義域和值域,求得函數(shù)f(x)在區(qū)間[-$\frac{π}{12}$,$\frac{π}{2}$]上的值域.
解答 解:(1)由于函數(shù)f(x)=2sin(2x+φ)(-π<φ<0)圖象的一個對稱中心為($\frac{7π}{12}$,0),
故有2•$\frac{7π}{12}$+φ=kπ,k∈π,求得φ=-$\frac{π}{6}$,∴f(x)=2sin(2x-$\frac{π}{6}$).
(2)對于函數(shù)f(x)=2sin(2x-$\frac{π}{6}$),令2kπ+$\frac{π}{2}$≤2x-$\frac{π}{6}$≤2kπ+$\frac{3π}{2}$,
求得kπ+$\frac{π}{3}$≤x≤kπ+$\frac{5π}{6}$,可得函數(shù)的減區(qū)間為[kπ+$\frac{π}{3}$,kπ+$\frac{5π}{6}$],k∈Z.
(3)∵x∈[-$\frac{π}{12}$,$\frac{π}{2}$],∴2x-$\frac{π}{6}$∈[-$\frac{π}{3}$,$\frac{5π}{6}$],∴sin(2x-$\frac{π}{6}$)∈[-$\frac{\sqrt{3}}{2}$,1],
故函數(shù)的值域為[-$\sqrt{3}$,2]..
點評 本題主要考查正弦函數(shù)的圖象的對稱性,正弦函數(shù)的單調(diào)性,正弦函數(shù)的定義域和值域,屬于基礎(chǔ)題.
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
| A. | 是奇函數(shù) | B. | 是偶函數(shù) | ||
| C. | 既是奇函數(shù)又是偶函數(shù) | D. | 是非奇非偶函數(shù) |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
| A. | 80-2π | B. | 80 | C. | 80+4π | D. | 80+6π |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
| A. | 若|$\overrightarrow{a}$+$\overrightarrow$|=|$\overrightarrow{a}$|-|$\overrightarrow$|,則$\overrightarrow{a}$$⊥\overrightarrow$ | B. | 若$\overrightarrow{a}$⊥$\overrightarrow$,則|$\overrightarrow{a}$+$\overrightarrow$|=|$\overrightarrow{a}$|-|$\overrightarrow$| | ||
| C. | 若|$\overrightarrow{a}$+$\overrightarrow$|=|$\overrightarrow{a}$|-|$\overrightarrow$|,則存在實數(shù)λ使得$\overrightarrow{a}$=$λ\overrightarrow$ | D. | 若存在實數(shù)λ使得$\overrightarrow{a}$=$λ\overrightarrow$,則|$\overrightarrow{a}$+$\overrightarrow$|=|$\overrightarrow{a}$|-|$\overrightarrow$| |
查看答案和解析>>
國際學(xué)校優(yōu)選 - 練習(xí)冊列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com