分析 在△BCD中使用正弦定理解出BC,在△ACD中使用正弦定理解出AC,在△ABC中使用余弦定理解出AB.
解答 解:在△BCD中,∠CBD=180°-∠BDC-∠BCD=45°,
由正弦定理得$\frac{CD}{sin∠CBD}=\frac{BC}{sin∠BDC}$,即$\frac{20\sqrt{3}}{\frac{\sqrt{2}}{2}}=\frac{BC}{\frac{\sqrt{3}}{2}}$,解得BC=30$\sqrt{2}$m.
在△ACD中,∠CAD=180°-∠ADC-∠ACD=60°.
由正弦定理得$\frac{CD}{sin∠CAD}=\frac{AC}{sin∠ADC}$,即$\frac{20\sqrt{3}}{\frac{\sqrt{3}}{2}}=\frac{AC}{\frac{\sqrt{6}+\sqrt{2}}{4}}$,解得AC=10$\sqrt{6}$+10$\sqrt{2}$m.
在△ABC中,∠ACB=∠BCD-∠ACD=30°,
由余弦定理得AB2=AC2+BC2-2AC×BC×cos∠ACB=800-200$\sqrt{3}$.
∴AB=10$\sqrt{8-2\sqrt{3}}$m.
點(diǎn)評(píng) 本題考查了正余弦定理在解三角形中的應(yīng)用,屬于中檔題.
| 年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
| 高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
| 高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
| 高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
| A. | $\frac{π}{6}$ | B. | $\frac{5π}{6}$ | C. | $\frac{2π}{3}$ | D. | $\frac{5π}{3}$ |
查看答案和解析>>
國際學(xué)校優(yōu)選 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com