欧美日韩黄网欧美日韩日B片|二区无码视频网站|欧美AAAA小视频|久久99爱视频播放|日本久久成人免费视频|性交黄色毛片特黄色性交毛片|91久久伊人日韩插穴|国产三级A片电影网站|亚州无码成人激情视频|国产又黄又粗又猛又爽的

20.已知函數(shù)f(x)=$\frac{1}{3}$x3-$\frac{1}{2}$(2a+1)x2+(a2+a)x.若函數(shù)f(x)在x=1處取得極大值,求實數(shù)a的值.

分析 f′(x)=x2-(2a+1)x+(a2+a)=[x-(a+1)](x-a),由函數(shù)f(x)在x=1處取得極大值,可得f′(1)=-a(1-a)=0,解得a=0或a=1.對a分類討論研究函數(shù)的單調(diào)性極值即可得出.

解答 解:f′(x)=x2-(2a+1)x+(a2+a)=[x-(a+1)](x-a),
∵函數(shù)f(x)在x=1處取得極大值,
∴f′(1)=-a(1-a)=0,解得a=0或a=1.
①當a=0時,f′(x)=x(x-1),
當x>1或x<0時,f′(x)>0,此時函數(shù)f(x)單調(diào)遞增;當0<x<1時,f′(x)<0,此時函數(shù)f(x)單調(diào)遞減.
此時x=1是函數(shù)f(x)的極小值點,舍去.
②當a=1時,f′(x)=(x-2)(x-1),
當x>2或x<1時,f′(x)>0,此時函數(shù)f(x)單調(diào)遞增;當1<x<2時,f′(x)<0,此時函數(shù)f(x)單調(diào)遞減.
此時x=1是函數(shù)f(x)的極大值點,滿足條件.
綜上可得:a=1.

點評 本題考查了利用導數(shù)研究函數(shù)的單調(diào)性極值與最值,考查了分類討論方法、推理能力與計算能力,屬于中檔題.

練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:填空題

9.在長方體ABCD-A1B1C1D1中,若經(jīng)過點A1,C1,B的截面交平面ABCD于直線a,則直線a的作法是連接AC,過點B作BE∥CA,交DA的延長線與點E,則BE即為所作的直線a

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

11.在銳角△ABC中,∠A=30°,O為△ABC所在平面內(nèi)一點,滿足$\frac{\overrightarrow{AB}}{|\overrightarrow{AB}|}$cosB+$\frac{\overrightarrow{AC}}{|\overrightarrow{AC}|}$cosC=$\overrightarrow{AO}$,則|$\overrightarrow{AO}$|=( 。
A.-$\frac{\sqrt{3}}{2}$B.$\sqrt{3}$C.2D.$\frac{1}{2}$

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

8.數(shù)列{an}對任意的n∈N*,滿足an+1=an +1,a1=12.
(1)求數(shù)列{an}的通項公式;
(2)若bn =($\frac{1}{3}$)${\;}^{{a}_{n}}$+n,求數(shù)列{bn}的通項公式及前n項和.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

15.已知正三棱柱的體積為64,當正三棱柱外接球體積最小時,正三柱側(cè)面積為多少?

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

5.已知x,y,z均為正實數(shù),求證:x2+y2+z2≥xy+xz+yz.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

12.已知f(x)=ln(x+1)+a(x2-x),a∈R,討論函數(shù)f(x)極值點的個數(shù),并說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

9.已知a>0,b>0,求證:($\frac{{a}^{2}}$)${\;}^{\frac{1}{2}}$+($\frac{^{2}}{a}$)${\;}^{\frac{1}{2}}$≥a${\;}^{\frac{1}{2}}$+b${\;}^{\frac{1}{2}}$.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

10.已知復數(shù)z=i2013+(i+1)5,則z的虛部是( 。
A.4B.3C.-4D.-3

查看答案和解析>>

同步練習冊答案