分析 (1)由已知得$\left\{\begin{array}{l}{log_a}4+b=1\\{log_a}1+b=-1\end{array}\right.$,從而求解析式即可;
(2)化簡(jiǎn)g(x)=2[log2(x+1)-1]-(log2x-1)=${log_2}\frac{{{{(x+1)}^2}}}{x}-1\;\;\;={log_2}(x+\frac{1}{x}+2)-1\;\;(x>0)$,從而利用基本不等式求最值.
解答 解:(1)由已知得,$\left\{\begin{array}{l}{log_a}4+b=1\\{log_a}1+b=-1\end{array}\right.$,(a>0且a≠1),
解得$\left\{\begin{array}{l}a=2\\ b=-1\end{array}\right.$;
故f(x)=log2x-1(x>0);
(2)∵g(x)=2f(x+1)-f(x)
=2[log2(x+1)-1]-(log2x-1),
∴g(x)=${log_2}\frac{{{{(x+1)}^2}}}{x}-1\;\;\;={log_2}(x+\frac{1}{x}+2)-1\;\;(x>0)$,
∴$g(x)={log_2}(x+\frac{1}{x}+2)-1\;≥{log_2}(2+2)-1=1$,
(當(dāng)且僅當(dāng)x=$\frac{1}{x}$,即x=1時(shí),等號(hào)成立).
于是,當(dāng)x=1時(shí),g(x)取得最小值1.
點(diǎn)評(píng) 本題考查了對(duì)數(shù)的運(yùn)算及對(duì)數(shù)函數(shù)的應(yīng)用,同時(shí)考查了基本不等式的應(yīng)用.
| 年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
| 高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
| 高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
| 高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
| A. | 4 | B. | 5 | C. | 6 | D. | 7 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
| A. | 沒(méi)有零點(diǎn) | B. | 有且僅有一個(gè)零點(diǎn) | ||
| C. | 有且僅有兩個(gè)零點(diǎn) | D. | 有無(wú)窮多個(gè)零點(diǎn) |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
| A. | ①② | B. | ②③ | C. | ①③ | D. | ②④ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
國(guó)際學(xué)校優(yōu)選 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com