【題目】已知函數(shù)
.
(1)討論函數(shù)
的單調(diào)性;
(2)若
且
,求證:
.
【答案】(1)答案見(jiàn)解析;(2)證明見(jiàn)解析.
【解析】試題分析:(1)對(duì)函數(shù)求導(dǎo),然后分類討論若
時(shí)、
時(shí)和
時(shí)三種情況,分別給出單調(diào)性(2)法一:構(gòu)造
,求導(dǎo)算出最值
,構(gòu)造
,利用二階導(dǎo)數(shù),得
,從而得證;法二:利用放縮法當(dāng)
時(shí),得
,即
,然后再證明;法三:對(duì)問(wèn)題放縮由于
,則只需證明
,然后給出證明
解析:解法一:(1)函數(shù)
的定義域?yàn)?/span>
,
,
①若
時(shí),則
,
在
上單調(diào)遞減;
②若
時(shí),當(dāng)
時(shí),
;
當(dāng)
時(shí),
;
當(dāng)
時(shí),
.
故在
上,
單調(diào)遞減;在
上,
單調(diào)遞増;
③若
時(shí),當(dāng)
時(shí),
;
當(dāng)
時(shí),
;當(dāng)
時(shí),
.
故在
上,
單調(diào)遞減;在
上,
單調(diào)遞増.
(2)若
且
,
欲證
,
只需證
,
即證
.
設(shè)函數(shù)
,則
.
當(dāng)
時(shí),
.故函數(shù)
在
上單調(diào)遞增.
所以
.
設(shè)函數(shù)
,則
.
設(shè)函數(shù)
,則
.
當(dāng)
時(shí),
,
故存在
,使得
,
從而函數(shù)
在
上單調(diào)遞增;在
上單調(diào)遞減.
當(dāng)
時(shí),
,當(dāng)
時(shí), ![]()
故存在
,使得
,
即當(dāng)
時(shí),
,當(dāng)
時(shí),
從而函數(shù)
在
上單調(diào)遞增;在
上單調(diào)遞減.
因?yàn)?/span>
,
故當(dāng)
時(shí), ![]()
所以
,
即
.
解法二:(1)同解法一.
(2)若
且
,
欲證
,
只需證
,
即證
.
設(shè)函數(shù)
,則
.
當(dāng)
時(shí),
.故函數(shù)
在
上單調(diào)遞增.
所以
.
設(shè)函數(shù)
,
因?yàn)?/span>
,所以
,所以
,
又
,所以
,
所以
,
即原不等式成立.
解法三:(1)同解法一.
(2)若
且
,
欲證
,
只需證
,
由于
,則只需證明
,
只需證明
,令
,
則
,
則函數(shù)
在
上單調(diào)遞減,則
,
所以
成立,
即原不等式成立.
| 年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
| 高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
| 高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
| 高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】某學(xué)校舉行了一次安全教育知識(shí)競(jìng)賽,競(jìng)賽的原始成績(jī)采用百分制.已知高三學(xué)生的原始成績(jī)均分布在
內(nèi),發(fā)布成績(jī)使用等級(jí)制,各等級(jí)劃分標(biāo)準(zhǔn)見(jiàn)表.
原始成績(jī) | 85分及以上 | 70分到84分 | 60分到69分 | 60分以下 |
等級(jí) | 優(yōu)秀 | 良好 | 及格 | 不及格 |
為了解該校高三年級(jí)學(xué)生安全教育學(xué)習(xí)情況,從中抽取了
名學(xué)生的原始成績(jī)作為樣本進(jìn)行統(tǒng)計(jì),按照
的分組作出頻率分布直方圖如圖所示,其中等級(jí)為不及格的有5人,優(yōu)秀的有3人.
![]()
(1)求
和頻率分布直方圖中的
的值;
(2)根據(jù)樣本估計(jì)總體的思想,以事件發(fā)生的頻率作為相應(yīng)事件發(fā)生的概率,若在該校高三學(xué)生中任選3人,求至少有1人成績(jī)是及格以上等級(jí)的概率;
(3)在選取的樣本中,從原始成績(jī)?cè)?/span>80分以上的學(xué)生中隨機(jī)抽取3名學(xué)生進(jìn)行學(xué)習(xí)經(jīng)驗(yàn)介紹,記
表示抽取的3名學(xué)生中優(yōu)秀等級(jí)的學(xué)生人數(shù),求隨機(jī)變量
的分布列及數(shù)學(xué)期望.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù)
有兩個(gè)零點(diǎn)
.
(1)求
的取值范圍;
(2)是否存在實(shí)數(shù)
, 對(duì)于符合題意的任意
,當(dāng)
時(shí)均有
?
若存在,求出所有
的值;若不存在,請(qǐng)說(shuō)明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知定義在R上的函數(shù)f(x)滿足:對(duì)任意
都有
,且當(dāng)x>0時(shí),
.
(1)求
的值,并證明
為奇函數(shù);
(2)判斷函數(shù)
的單調(diào)性,并證明;
(3)若
對(duì)任意
恒成立,求實(shí)數(shù)
的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知拋物線
上點(diǎn)
處的切線方程為
.
(Ⅰ)求拋物線的方程;
(Ⅱ)設(shè)
和
為拋物線上的兩個(gè)動(dòng)點(diǎn),其中
且
,線段
的垂直平分線
與
軸交于點(diǎn)
,求
面積的最大值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù)
,若關(guān)于
的不等式
恰有3個(gè)整數(shù)解,則實(shí)數(shù)
的最小值為( )
A. 1 B.
C.
D. ![]()
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知橢圓
的離心率為
,點(diǎn)
在橢圓上.
(
)求橢圓
的方程.
(
)設(shè)動(dòng)直線
與橢圓
有且僅有一個(gè)公共點(diǎn),判斷是否存在以原點(diǎn)
為圓心的圓,滿足此圓與
相交于兩點(diǎn)
,
(兩點(diǎn)均不在坐標(biāo)軸上),且使得直線
、
的斜率之積為定值?若存在,求此圓的方程;若不存在,說(shuō)明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】為了調(diào)查觀眾對(duì)電視劇《風(fēng)箏》的喜愛(ài)程度,某電視臺(tái)舉辦了一次現(xiàn)場(chǎng)調(diào)查活動(dòng).在參加此活動(dòng)的甲、乙兩地觀眾中,各隨機(jī)抽取了8名觀眾對(duì)該電視劇評(píng)分做調(diào)查(滿分100分),被抽取的觀眾的評(píng)分結(jié)果如圖所示
(Ⅰ)計(jì)算:①甲地被抽取的觀眾評(píng)分的中位數(shù);
②乙地被抽取的觀眾評(píng)分的極差;
(Ⅱ)用頻率估計(jì)概率,若從乙地的所有觀眾中再隨機(jī)抽取4人進(jìn)行評(píng)分調(diào)查,記抽取的4人評(píng)分不低于90分的人數(shù)為
,求
的分布列與期望;
(Ⅲ)從甲、乙兩地分別抽取的8名觀眾中各抽取一人,在已知兩人中至少一人評(píng)分不低于90分的條件下,求乙地被抽取的觀眾評(píng)分低于90分的概率.
![]()
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】某市小型機(jī)動(dòng)車駕照“科二”考試中共有5項(xiàng)考查項(xiàng)目,分別記作①,②,③,④,⑤.
(1)某教練將所帶10名學(xué)員“科二”模擬考試成績(jī)進(jìn)行統(tǒng)計(jì)(如表所示),并計(jì)算從恰有2項(xiàng)成績(jī)不合格的學(xué)員中任意抽出2人進(jìn)行補(bǔ)測(cè)(只測(cè)不合格的項(xiàng)目),求補(bǔ)測(cè)項(xiàng)目種類不超過(guò)3(
)項(xiàng)的概率.
![]()
(2)“科二”考試中,學(xué)員需繳納150元的報(bào)名費(fèi),并進(jìn)行1輪測(cè)試(按①,②,③,④,⑤的順序進(jìn)行);如果某項(xiàng)目不合格,可免費(fèi)再進(jìn)行1輪補(bǔ)測(cè);若第1輪補(bǔ)測(cè)中仍有不合格的項(xiàng)目,可選擇“是否補(bǔ)考”;若補(bǔ)考則需繳納300元補(bǔ)考費(fèi),并獲得最多2輪補(bǔ)測(cè)機(jī)會(huì),否則考試結(jié)束;每1輪補(bǔ)測(cè)都按①,②,③,④,⑤的順序進(jìn)行,學(xué)員在任何1輪測(cè)試或補(bǔ)測(cè)中5個(gè)項(xiàng)目均合格,方可通過(guò)“科二”考試,每人最多只能補(bǔ)考1次,某學(xué)院每輪測(cè)試或補(bǔ)考通過(guò)①,②,③,④,⑤各項(xiàng)測(cè)試的概率依次為
,且他遇到“是否補(bǔ)考”的決斷時(shí)會(huì)選擇補(bǔ)考.
①求該學(xué)員能通過(guò)“科二”考試的概率;
②求該學(xué)員繳納的考試費(fèi)用
的數(shù)學(xué)期望.
查看答案和解析>>
國(guó)際學(xué)校優(yōu)選 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com