欧美日韩黄网欧美日韩日B片|二区无码视频网站|欧美AAAA小视频|久久99爱视频播放|日本久久成人免费视频|性交黄色毛片特黄色性交毛片|91久久伊人日韩插穴|国产三级A片电影网站|亚州无码成人激情视频|国产又黄又粗又猛又爽的

9.函數(shù)f(x)=sin2x的圖象可以由g(x)=sin(2x-$\frac{1}{2}$)的圖象向左平移$\frac{1}{4}$個(gè)單位得到.

分析 由條件根據(jù)函數(shù)y=Asin(ωx+φ)的圖象變換規(guī)律,可得結(jié)論.

解答 解:由g(x)=sin(2x-$\frac{1}{2}$)的圖象向左平移$\frac{1}{4}$個(gè)單位,可得函數(shù)y=sin2(x+$\frac{1}{4}$)-$\frac{1}{2}$]=f(x)=sin2x的圖象,
故答案為:$\frac{1}{4}$.

點(diǎn)評(píng) 本題主要考查函數(shù)y=Asin(ωx+φ)的圖象變換規(guī)律,屬于基礎(chǔ)題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

19.以下四個(gè)數(shù)是數(shù)列{n(n+2)}的項(xiàng)的是 ( 。
A.98B.99C.100D.101

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

20.某次數(shù)學(xué)測(cè)試中,小明完成前5道題所花的時(shí)間(單位:分鐘)分別為4,5,6,x,y.已知這組數(shù)據(jù)的平均數(shù)為5,方差為$\frac{4}{5}$,則|x-y|的值為( 。
A.1B.2C.3D.4

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

17.已知△ABC中,角A,B,C所對(duì)的邊分別為a,b,c,若sin2 A+sin2 B=sin2C+sin AsinB,ccosB=b(1-cosC).
(1)判斷△ABC的形狀;
(2)在△ABC的邊AB,AC上分別取D,E兩點(diǎn),使沿線段DE折疊三角形時(shí),頂點(diǎn)A正好落在邊BC上的P點(diǎn)處,設(shè)∠BDP=θ,當(dāng)AD最小時(shí),求$\frac{{|{{A}D}|}}{{|{{A}{B}}|}}$的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

4.一只螞蟻在三邊長(zhǎng)分別為3、4、5的三角形面上自由爬行,某時(shí)刻該螞蟻距離三角形的三個(gè)頂點(diǎn)的距離不超過(guò)1的概率為( 。
A.$\frac{π}{6}$B.$\frac{π}{12}$C.$\frac{1}{3}$D.$\frac{1}{2}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

14.如圖所示,在△ABC中,AB=4,AC=2,若O為△ABC的外心.
(Ⅰ)求$\overrightarrow{AO}$•$\overrightarrow{AC}$的值;
(Ⅱ)求$\overrightarrow{AO}$•$\overrightarrow{CB}$的值;
(Ⅲ)若平面內(nèi)一點(diǎn)P滿足($\overrightarrow{PA}$+$\overrightarrow{PB}$)•$\overrightarrow{AB}$=($\overrightarrow{PB}$+$\overrightarrow{PC}$)•$\overrightarrow{BC}$=($\overrightarrow{PC}$+$\overrightarrow{PA}$)•$\overrightarrow{CA}$=0,
試判定點(diǎn)P的位置.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

1.如圖,用X、Y、Z這3類不同的元件連接成系統(tǒng)N,每個(gè)元件是否正常工作不受其它元件的影響,已知元件X、Y、Z正常工作的概率依次為0.8、0.7、0.9,則系統(tǒng)N正常工作的概率是0.776.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

18.已知$\vec a=(4,2)$,$\vec b=(2,y)$,若$\vec a∥\vec b$,則y=( 。
A.1B.-1C.4D.-4

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

19.已知數(shù)列{an}滿足a1=2,an+1=$\frac{{1+{a_n}}}{{1-{a_n}}}$,則a15等于(  )
A.2B.-3C.-$\frac{1}{2}$D.$\frac{1}{3}$

查看答案和解析>>

同步練習(xí)冊(cè)答案