欧美日韩黄网欧美日韩日B片|二区无码视频网站|欧美AAAA小视频|久久99爱视频播放|日本久久成人免费视频|性交黄色毛片特黄色性交毛片|91久久伊人日韩插穴|国产三级A片电影网站|亚州无码成人激情视频|国产又黄又粗又猛又爽的

8.如圖是某幾何體的三視圖,則該幾何體的體積為( 。
A.64+32πB.64+54πC.256+64πD.256+128π

分析 根據(jù)幾何體的三視圖,得出該幾何體是長(zhǎng)方體與圓柱體的組合體,由此求出它的體積.

解答 解:根據(jù)幾何體的三視圖,得;
該幾何體是長(zhǎng)和寬為8,高為4的長(zhǎng)方體,
與底面直徑為8,高為4的圓柱體的組合體,
如圖所示;
∴該幾何體的體積為
V正方體+V圓柱體=8×8×4+π×42×4=256+64π.
故選:C.

點(diǎn)評(píng) 本題考查了空間幾何體的三視圖的應(yīng)用問(wèn)題,解題的關(guān)鍵是根據(jù)三視圖得出幾何體的結(jié)構(gòu)特征是什么,屬于基礎(chǔ)題目.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

8.設(shè)函數(shù)f(x)=exsinx-cosx,g(x)=xcosx-$\sqrt{2}$ex(其中e是自然對(duì)數(shù)的底數(shù)),?x1∈[0,$\frac{π}{2}$],?x2∈[0,$\frac{π}{2}$],使得不等式f(x1)+g(x2)≥m成立,則實(shí)數(shù)m的范圍(  )
A.(-∞,-1-$\sqrt{2}$]B.(-∞,${e}^{\frac{π}{2}}$-$\sqrt{2}$]C.(-∞,-1-$\sqrt{2}$${e}^{\frac{π}{2}}$]D.(-∞,(-1-$\sqrt{2}$)${e}^{\frac{π}{2}}$]

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

19.如圖,在正方體ABCD-A1B1C1D1中,直線B1B與平面A1C1D所成角的余弦值為$\frac{\sqrt{6}}{3}$.
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

16.已知在△ABC中,內(nèi)角∠A、∠B、∠C的對(duì)邊分別為a、b、c,面積S=$\frac{1}{4}$(a2+b2-c2).
(1)求∠C的度數(shù);
(2)若S=$\sqrt{2}$,a+b=$\sqrt{17}$,求邊c的長(zhǎng)度.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

3.已知P、Q兩點(diǎn)的極坐標(biāo)分別為(4,$\frac{2π}{3}$)、(2,$\frac{π}{3}$),在直角坐標(biāo)系中,下列各點(diǎn)在線段PQ的垂直平分線上的為( 。
A.(0,2$\sqrt{3}$)B.(-$\frac{1}{2}$,2$\sqrt{3}$)C.(0,-2$\sqrt{3}$)D.(-$\frac{1}{2}$,-2$\sqrt{3}$)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

13.已知正實(shí)數(shù)x,y滿足$x+\frac{2}{x}+3y+\frac{4}{y}=10$,則xy的取值范圍為[1,$\frac{8}{3}$].

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

20.已知函數(shù)f(x)=Asin(ωx+φ)在x=1處取得最大值,則f(x+1)的圖象關(guān)于y軸對(duì)稱.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

17.設(shè)公差不為零的等差數(shù)列{an}的前n項(xiàng)和為Sn,若S1、a2、S3成等比數(shù)列,則$\frac{a_4}{a_1}$=7.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

18.設(shè)函數(shù)f(x)=$\left\{\begin{array}{l}{{x}^{2}-2x+a,x<\frac{1}{2}}\\{{4}^{x}-3,x≥\frac{1}{2}}\end{array}\right.$的最小值為-1,則實(shí)數(shù)a的取值范圍是( 。
A.a≥-2B.a>-2C.a≥-$\frac{1}{4}$D.a>-$\frac{1}{4}$

查看答案和解析>>

同步練習(xí)冊(cè)答案