欧美日韩黄网欧美日韩日B片|二区无码视频网站|欧美AAAA小视频|久久99爱视频播放|日本久久成人免费视频|性交黄色毛片特黄色性交毛片|91久久伊人日韩插穴|国产三级A片电影网站|亚州无码成人激情视频|国产又黄又粗又猛又爽的

16.已知函數(shù)y=loga(x-1)+3(a>0,a≠1)所過定點(diǎn)的橫、縱坐標(biāo)分別是等差數(shù)列{an}的第二項(xiàng)與第三項(xiàng),若bn=$\frac{1}{{{a_n}•{a_{n+1}}}}$,數(shù)列{bn}的前n項(xiàng)和為Tn,則T2015=$\frac{2015}{2016}$.

分析 由于函數(shù)y=loga(x-1)+3(a>0,a≠1)所過定點(diǎn)為(2,3),可得a2=2,a3=3,利用等差數(shù)列的通項(xiàng)公式可得:an=n,bn=$\frac{1}{{{a_n}•{a_{n+1}}}}$=$\frac{1}{n(n+1)}=\frac{1}{n}-\frac{1}{n+1}$,
再利用“裂項(xiàng)求和”即可得出.

解答 解:函數(shù)y=loga(x-1)+3(a>0,a≠1)所過定點(diǎn)為(2,3),
∴a2=2,a3=3,
∴等差數(shù)列{an}的公差d=3-2=1,
∴an=a2+(n-2)d=2+n-2=n,
∴bn=$\frac{1}{{{a_n}•{a_{n+1}}}}$=$\frac{1}{n(n+1)}=\frac{1}{n}-\frac{1}{n+1}$,
∴數(shù)列{bn}的前n項(xiàng)和為Tn=$(1-\frac{1}{2})+(\frac{1}{2}-\frac{1}{3})$+…+$(\frac{1}{n}-\frac{1}{n+1})$=$1-\frac{1}{n+1}=\frac{n}{n+1}$.
∴T2015=$\frac{2015}{2016}$.
故答案為:$\frac{2015}{2016}$.

點(diǎn)評 本題考查了對數(shù)函數(shù)的性質(zhì)、等差數(shù)列的通項(xiàng)公式、“裂項(xiàng)求和”方法,考查了推理能力與計(jì)算能力,屬于中檔題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

6.設(shè)拋物線C1:y2=4x的準(zhǔn)線與x軸交于點(diǎn)F1,焦點(diǎn)為F2;以F1,F(xiàn)2為焦點(diǎn),離心率為$\frac{1}{2}$的橢圓記作C2
(1)求橢圓的標(biāo)準(zhǔn)方程;
(2)直線l經(jīng)過橢圓C2的右焦點(diǎn)F2,與拋物線C1交于A1,A2兩點(diǎn),與橢圓C2交于B1,B2兩點(diǎn).當(dāng)以B1B2為直徑的圓經(jīng)過F1時(shí),求|A1A2|長.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

7.已知三棱錐P-ABC的四個(gè)頂點(diǎn)都在球O的球面上,若PA=AB=2,AC=1,∠BAC=120°,且PA⊥面ABC,則球O的表面積為$\frac{40}{3}$π.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

4.二項(xiàng)式(x2-$\frac{1}{x}$)6的展開式中不含x3項(xiàng)的系數(shù)之和為( 。
A.20B.24C.30D.36

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

11.設(shè)函數(shù),f(x)=lnx+$\frac{k}{x}$,k∈R.
(1)若曲線y=f(x)在點(diǎn)(e,f(e))處的切線與直線x-2=0垂直,求f(x)的單調(diào)遞減區(qū)間和極小值(其中e為自然對數(shù)的底數(shù));
(2)若對任意x1>x2>0,f(x1)-f(x2)<x1-x2恒成立,求k的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

1.以下說法正確的是( 。
A.命題“若x>1,則x2>1”的逆命題是“若x≤1,則x2≤1”
B.命題:“?x0∈R,使得2+sinx0=0”的否定是“?x∈R,都有2+sinx≠0”
C.“x=1”是“x2-3x+2=0”的充要條件
D.若p∧q為假命題,則p、q均為假命題

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

8.函數(shù)y=sin(π-x)-1的圖象( 。
A.關(guān)于x=$\frac{π}{2}$對稱B.關(guān)于y軸對稱C.關(guān)于原點(diǎn)對稱D.關(guān)于x=π對稱

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

5.已知等差數(shù)列{an}的前n項(xiàng)和為Sn,且S5=25,a7=13,數(shù)列{bn}的前n項(xiàng)和為Tn,Tn=2bn-1
(1)求數(shù)列{an}和{bn}的通項(xiàng)公式;
(2)若cn=anbn,求數(shù)列{cn}的前n項(xiàng)和Qn

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

6.若定義R在上的函數(shù)f(x)滿足f(x)=$\frac{f′(1)}{2}$•e2x-2+x2-2f(0)x,g(x)=f($\frac{π}{2}$)-$\frac{1}{4}$x2+(1+a)x+a
(Ⅰ)求函數(shù)f(x)解析式;
(Ⅱ)求函數(shù)g(x)單調(diào)區(qū)間;
(Ⅲ)當(dāng)a≥2且x≥1時(shí),試比較|$\frac{e}{x}$-lnx|+lnx和g′(x-1)的大小,并說明理由.

查看答案和解析>>

同步練習(xí)冊答案