分析 (1)設(shè)z=bi,b∈R,則$\overline{z}$=-bi,利用|z-$\overline{z}$|=2$\sqrt{3}$,求出b,然后求解復(fù)數(shù)z.
(2)設(shè)z=a+bi,(a,b∈R),則$\overline{z}$=a-bi,利用|z-$\overline{z}$|=2$\sqrt{3}$,求出|b|=$\sqrt{3}$,化簡(jiǎn)z-$\overline{z}$2,通過(guò)z-$\overline{z}$2為實(shí)數(shù),求出a,然后求解|z|.
解答 解:(1)設(shè)z=bi,b∈R,則$\overline{z}$=-bi,
因?yàn)閨z-$\overline{z}$|=2$\sqrt{3}$,則|2bi|=2$\sqrt{3}$,即|b|=$\sqrt{3}$…(4分)
所以b=$±\sqrt{3}$,所以z=$±\sqrt{3}i$…(6分)
(2)設(shè)z=a+bi,(a,b∈R),則$\overline{z}$=a-bi,
因?yàn)閨z-$\overline{z}$|=2$\sqrt{3}$,則|2bi|=2$\sqrt{3}$,即|b|=$\sqrt{3}$.…(7分)
z-$\overline{z}$2=a+bi-(a-bi)2=a-a2+b2+(b+2ab)i.
因?yàn)閦-$\overline{z}$2為實(shí)數(shù),所以b+2ab=0…(10分)
因?yàn)閨b|=$\sqrt{3}$,所以a=$-\frac{1}{2}$,…(12分)
所以|z|=$\sqrt{{(-\frac{1}{2})}^{2}+{(±\sqrt{3})}^{2}}$=$\frac{\sqrt{13}}{2}$…(14分)
點(diǎn)評(píng) 本題考查復(fù)數(shù)代數(shù)形式的混合運(yùn)算,復(fù)數(shù)的模的求法,共軛復(fù)數(shù)的應(yīng)用,考查計(jì)算能力.
| 年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
| 高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
| 高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
| 高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
| A. | x+y+2=0 | B. | x+y-1=0 | C. | x+y=0 | D. | x+y-2=0 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
| A. | 奇函數(shù) | B. | 偶函數(shù) | ||
| C. | 既是奇函數(shù)又是偶函數(shù) | D. | 非奇非偶函數(shù) |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
| A. | $\frac{{{x^2}+{y^2}}}{2}≥{(\frac{x+y}{2})^2}$ | B. | ${x^2}+2≥2\sqrt{{x^2}+1}$ | C. | (a2+1)(b2+1)>(ab+1)2 | D. | |a+b|-|a-b|≤2|b| |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
| A. | $\frac{400π}{3}cm$ | B. | $\frac{20π}{3}cm$ | C. | $\frac{200π}{3}cm$ | D. | $\frac{40π}{3}cm$ |
查看答案和解析>>
國(guó)際學(xué)校優(yōu)選 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com