分析 作DF⊥BC,垂足為F,則DF⊥面B1BCC1,連接EF,則EF是ED在平面B1BCC1上的射影,根據(jù)二面角的平面角的定義可知∠DEF是二面角D-BC1-C的平面角,然后在三角形DEF中求出∠DEF即可.
解答
解:作DF⊥BC,垂足為F,則DF⊥面B1BCC1,
連接EF,則EF是ED在平面B1BCC1上的射影.
∵A1B1C1-ABC是正三棱柱,∴四邊形B1BCC1是矩形.
連接B1C交BC1于E,則B1E=EC.連接DE.
在△AB1C中,∵AD=DC,∴DE∥AB1.
又∵AB1⊥BC1,∴DE⊥BC1,
∴BC1⊥EF,∴∠DEF是二面角D-BC1-C的平面角.
設(shè)AC=1,則DC=$\frac{1}{2}$.
∵△ABC是正三角形,
∴在Rt△DCF中,
DF=DC•sinC=$\frac{\sqrt{3}}{4}$,CF=DC•cosC=$\frac{1}{4}$.
取BC中點G.
∵EB=EC,∴EG⊥BC.
在Rt△BEF中,EF2=BF•GF,
又BF=BC-FC=$\frac{3}{4}$,GF=$\frac{1}{4}$,
∴EF2=$\frac{3}{4}$•$\frac{1}{4}$,即EF=$\frac{\sqrt{3}}{4}$.
∴tan∠DEF=$\frac{DF}{EF}$=$\frac{\frac{\sqrt{3}}{4}}{\frac{\sqrt{3}}{4}}$=1.
∴∠DEF=45°.
故二面角D-BC1-C的度數(shù)為45°.
點評 本題考查空間線面關(guān)系、正棱柱的性質(zhì)、空間想象能力和邏輯推理能力,屬于中檔題.
科目:高中數(shù)學(xué) 來源: 題型:選擇題
| A. | 3、7、9、15、100 | B. | 4、10、12、34、100 | C. | 5、11、16、30、100 | D. | 4、10、13、43、100 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
| A. | ±1 | B. | 1 | C. | $±\sqrt{2}$ | D. | $\sqrt{2}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
| A. | -12 | B. | -8 | C. | -4 | D. | 0 |
查看答案和解析>>
國際學(xué)校優(yōu)選 - 練習(xí)冊列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com