欧美日韩黄网欧美日韩日B片|二区无码视频网站|欧美AAAA小视频|久久99爱视频播放|日本久久成人免费视频|性交黄色毛片特黄色性交毛片|91久久伊人日韩插穴|国产三级A片电影网站|亚州无码成人激情视频|国产又黄又粗又猛又爽的

5.點(diǎn)(3,1)到直線3x-4y=2的距離是$\frac{3}{5}$.

分析 利用點(diǎn)到直線的距離公式即可得出.

解答 解:點(diǎn)(3,1)到直線3x-4y=2的距離d=$\frac{|3×3-1×4-2|}{\sqrt{{3}^{2}+{4}^{2}}}$=$\frac{3}{5}$.
故答案為:$\frac{3}{5}$.

點(diǎn)評(píng) 本題考查了點(diǎn)到直線的距離公式,考查了計(jì)算能力,屬于基礎(chǔ)題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

15.設(shè)全集U=R,M={x|y=2x+1},N={y|y=-x2},則M和N的關(guān)系是( 。
A.M$\underset{?}{≠}$NB.M∩N={(-1,1)}C.M=ND.N$\underset{?}{≠}$M

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

16.下列函數(shù)是冪函數(shù)的是( 。
A.y=2x2B.y=x3+xC.y=3xD.y=x3

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

13.在△ABC中,若(b-bcosB)sinA=a(sinB-sinCcosC),則這個(gè)三角形是( 。
A.等腰直角三角形B.底角不等于45°的等腰三角形
C.等腰三角形或直角三角形D.銳角不等于45°的直角三角形

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

20.某農(nóng)科所對(duì)冬季晝夜溫差大小與某反季節(jié)大豆新品種發(fā)芽多少之間的關(guān)系進(jìn)行分析研究,他們分別記錄了12月1日至12月5日的每天晝夜溫差與實(shí)驗(yàn)室每天每100顆種子中的發(fā)芽數(shù),得到如下資料:
日期12月1日12月2日12月3日12月4日12月5日
溫差x (℃)101113128
發(fā)芽數(shù)y(顆)2325302616
該農(nóng)科所確定的研究方案是:先從這五組數(shù)據(jù)中選取2組,用剩下的3組數(shù)據(jù)求線性回歸方程,再對(duì)被選取的2組數(shù)據(jù)進(jìn)行檢驗(yàn).
(1)求選取的2組數(shù)據(jù)恰好是不相鄰2天數(shù)據(jù)的概率;
(2)若選取的是12月1日與12月5日的兩組數(shù)據(jù),請(qǐng)根據(jù)12月2日至12月4日的數(shù)據(jù),求出y關(guān)于x的線性回歸方程$\stackrel{∧}{y}$=bx+a已知回歸直線方程是:$\stackrel{∧}{y}$=bx+a,其中b=$\frac{\sum_{i-1}^{n}{x}_{i}{y}_{i}-n\overline{xy}}{\sum_{i-1}^{n}{x}_{i}^{2}-n{\overline{x}}^{2}}$,a=$\overline{y}$-b$\overline{x}$;
(3)若由線性回歸方程得到的估計(jì)數(shù)據(jù)與所選出的檢驗(yàn)數(shù)據(jù)的誤差均不超過(guò)2顆,則認(rèn)為得到的線性回歸方程是可靠的,試問(wèn)(2)中所得的線性回歸方程是否可靠?

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

10.已知0<a<1,b<-1,則函數(shù)y=ax+b的圖象必定不經(jīng)過(guò)第一象限.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

17.將參數(shù)方程$\left\{\begin{array}{l}x=-2+{cos^2}θ\\ y={cos^2}θ\end{array}\right.$(θ為參數(shù))化為普通方程為( 。
A.y=x-2B.y=x-2(0≤y≤1)C.y=x+2(-2≤x≤-1)D.y=x+2

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

14.已知直線l的參數(shù)方程為$\left\{\begin{array}{l}{x=t}\\{y=t}\end{array}\right.$ (t為參數(shù)),圓C的極坐標(biāo)方程為ρ=2cos θ,則圓C的圓心到直線l的距離為( 。
A.$\frac{1}{2}$B.$\frac{\sqrt{2}}{2}$C.$\frac{1}{4}$D.$\frac{\sqrt{2}}{4}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

15.若函數(shù)f(x)滿足f(x-y)=$\frac{f(x)}{f(y)}$,f(x)≠0,且x>0時(shí),f(x)>1,已知f(4)=16.
(1)求f(0)和f(2)的值;
(2)求使不等式f(2x-3)f(2-3x)≤4成立的x的取值范圍.

查看答案和解析>>

同步練習(xí)冊(cè)答案