【題目】“柯西不等式”是由數(shù)學(xué)家柯西在研究數(shù)學(xué)分析中的“流數(shù)”問題時得到的,但從歷史的角度講,該不等式應(yīng)當(dāng)稱為柯西﹣﹣布尼亞科夫斯基﹣﹣施瓦茨不等式,因為正是后兩位數(shù)學(xué)家彼此獨(dú)立地在積分學(xué)中推而廣之,才將這一不等式推廣到完善的地步,在高中數(shù)學(xué)選修教材4﹣5中給出了二維形式的柯西不等式:(a2+b2)(c2+d2)≥(ac+bd)2當(dāng)且僅當(dāng)ad=bc(即
)時等號成立.該不等式在數(shù)學(xué)中證明不等式和求函數(shù)最值等方面都有廣泛的應(yīng)用.根據(jù)柯西不等式可知函數(shù)
的最大值及取得最大值時x的值分別為( 。
A.
B.
C.
D.![]()
| 年級 | 高中課程 | 年級 | 初中課程 |
| 高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
| 高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
| 高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè)橢圓
的離心率
,橢圓上的點(diǎn)到左焦點(diǎn)
的距離的最大值為3.
![]()
(1)求橢圓
的方程;
(2)求橢圓
的外切矩形
的面積
的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)
.
(1)討論函數(shù)
的單調(diào)性;
(2)對任意的
,
,
,恒有
,求實數(shù)
的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】甲、乙、丙三人參加微信群搶紅包游戲,規(guī)則如下:每輪游戲發(fā)
個紅包,每個紅包金額為
元,
.已知在每輪游戲中所產(chǎn)生的
個紅包金額的頻率分布直方圖如圖所示.
![]()
(1)求
的值,并根據(jù)頻率分布直方圖,估計紅包金額的眾數(shù);
(2)以頻率分布直方圖中的頻率作為概率,若甲、乙、丙三人從中各搶到一個紅包,其中金額在
的紅包個數(shù)為
,求
的分布列和期望.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)![]()
(1)當(dāng)
時,求函數(shù)
的單調(diào)區(qū)間;
(2)若函數(shù)
的值域為
,求a的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】《最強(qiáng)大腦》是大型科學(xué)競技類真人秀節(jié)目,是專注傳播腦科學(xué)知識和腦力競技的節(jié)目.某機(jī)構(gòu)為了了解大學(xué)生喜歡《最強(qiáng)大腦》是否與性別有關(guān),對某校的100名大學(xué)生進(jìn)行了問卷調(diào)查,得到如下列聯(lián)表:
喜歡《最強(qiáng)大腦》 | 不喜歡《最強(qiáng)大腦》 | 合計 | |
男生 | 15 | ||
女生 | 15 | ||
合計 |
已知在這100人中隨機(jī)抽取1人抽到不喜歡《最強(qiáng)大腦》的大學(xué)生的概率為0.4
(I)請將上述列聯(lián)表補(bǔ)充完整;判斷是否有99.9%的把握認(rèn)為喜歡《最強(qiáng)大腦》與性別有關(guān),并說明理由;
(II)已知在被調(diào)查的大學(xué)生中有5名是大一學(xué)生,其中3名喜歡《最強(qiáng)大腦》,現(xiàn)從這5名大一學(xué)生中隨機(jī)抽取2人,抽到喜歡《最強(qiáng)大腦》的人數(shù)為X,求X的分布列及數(shù)學(xué)期望.
參考公式:
,![]()
參考數(shù)據(jù):
,
,
,
.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在平面直角坐標(biāo)系中,以原點(diǎn)為極點(diǎn),
軸的正半軸為極軸建立極坐標(biāo)系,兩種坐標(biāo)系取相同的單位長度.已知曲線
,過點(diǎn)
的直線
的參數(shù)方程為
.直線
與曲線
分別交于
、
.
(1)求
的取值范圍;
(2)若
、
、
成等比數(shù)列,求實數(shù)
的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè)集合
由滿足下列兩個條件的數(shù)列
構(gòu)成:①
②存在實數(shù)
使得
對任意正整數(shù)
都成立.
(1)現(xiàn)在給出只有5項的有限數(shù)列
試判斷數(shù)列
是否為集合
的元素;
(2)設(shè)數(shù)列
的前項和為
且
若對任意正整數(shù)
點(diǎn)
均在直線
上,證明:數(shù)列
并寫出實數(shù)
的取值范圍;
(3)設(shè)數(shù)列
若數(shù)列
沒有最大值,求證:數(shù)列
一定是單調(diào)遞增數(shù)列。
查看答案和解析>>
國際學(xué)校優(yōu)選 - 練習(xí)冊列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com