分析 (1)由3(an-1)(an-1-1)+an-an-1=0(n≥2),變形為3(an-1)(an-1-1)+(an-1)-(an-1-1)=0,化為$\frac{1}{{a}_{n}-1}-\frac{1}{{a}_{n-1}-1}$=3,利用等差數(shù)列的通項公式即可得出.
(2)由bn=$\sqrt{\frac{1}{3n-2}}$>$\frac{2}{\sqrt{3n+1}+\sqrt{3n-2}}$>$\frac{2}{3}$($\sqrt{3n+1}-\sqrt{3n-2}$),利用“裂項求和”與“放縮法”即可證明.
解答 (1)解:∵3(an-1)(an-1-1)+an-an-1=0(n≥2),
∴3(an-1)(an-1-1)+(an-1)-(an-1-1)=0,
化為$\frac{1}{{a}_{n}-1}-\frac{1}{{a}_{n-1}-1}$=3,
∴數(shù)列$\{\frac{1}{{a}_{n}-1}\}$是等差數(shù)列,首項為1,公差為3,
∴$\frac{1}{{a}_{n}-1}$=1+3(n-1)=3n-2,
∴an=$\frac{3n-1}{3n-2}$.
(2)證明:bn=$\sqrt{{a}_{n}-1}$=$\sqrt{\frac{1}{3n-2}}$>$\frac{2}{\sqrt{3n+1}+\sqrt{3n-2}}$>$\frac{2}{3}$($\sqrt{3n+1}-\sqrt{3n-2}$),
∴{bn}的前n項和為Tn=b1+b2+…+bn
>$\frac{2}{3}$$[(\sqrt{4}-\sqrt{1})+(\sqrt{7}-\sqrt{4})+…+(\sqrt{3n+1}-\sqrt{3n-2})]$
=$\frac{2}{3}$$(\sqrt{3n+1}-1)$.
∴Tn>$\frac{2}{3}$($\sqrt{3n+1}$-1).
點評 本題考查了等差數(shù)列的通項公式、“裂項求和”與“放縮法”,考查了變形能力、推理能力與計算能力,屬于中檔題.
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
| A. | B. | C. | D. |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
國際學(xué)校優(yōu)選 - 練習(xí)冊列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com