(本題滿分12分)
雙曲線的中心為原點(diǎn)
,焦點(diǎn)在
軸上,兩條漸近線分別為
,經(jīng)過(guò)右焦點(diǎn)
垂直于
的直線分別交
于
兩點(diǎn).已知
成等差數(shù)列,且
與
同向.
(Ⅰ)求雙曲線的離心率;
(Ⅱ)設(shè)
被雙曲線所截得的線段的長(zhǎng)為4,求雙曲線的方程.
(Ⅰ)e=
=
;(Ⅱ)
。
解析試題分析:(Ⅰ)設(shè)
,
,![]()
由勾股定理可得:
得:
,
,![]()
由倍角公式![]()
,解得
,則離心率
.
(Ⅱ)過(guò)
直線方程為
,與雙曲線方程
聯(lián)立
將
,
代入,
化簡(jiǎn)有
![]()
將數(shù)值代入,有
,解得
故所求的雙曲線方程為
.
解法二:解:(Ⅰ)設(shè)雙曲線方程為
(a>0,b>0),右焦點(diǎn)為F(c,0)(c>0),則c2=a2+b2
不妨設(shè)l1:bx-ay=0,l2:bx+ay=0![]()
則
,![]()
因?yàn)?img src="http://thumb.zyjl.cn/pic5/tikupic/20/1/18i044.png" style="vertical-align:middle;" />2+
2=
2,且
=2
-
,
所以
2+
2=(2
-
)2,
于是得tan∠AOB=
。
又
與
同向,故∠AOF=
∠AOB,
所以 ![]()
解得 tan∠AOF=
,或tan∠AOF=-2(舍去)。
因此 ![]()
所以雙曲線的離心率e=
=![]()
(Ⅱ)由a=2b知,雙曲線的方程可化為
x2-4y2=4b2 ①
由l1的斜率為
,c=
b知,直線AB的方程為
y=-2(x-
b) ②
將②代入①并化簡(jiǎn),得
15x2-32
bx+84b2=0
設(shè)AB與雙曲線的兩交點(diǎn)的坐標(biāo)分別為(x1,y1),(x2,y2),則
x1+x2=
,x1·x2=
③
AB被雙曲線所截得的線段長(zhǎng)
l=
④
將③代入④,并化簡(jiǎn)得l=
,而由已知l=4,故b=3,a=6
所以雙曲線的方程為![]()
考點(diǎn):本題主要考查雙曲線的幾何性質(zhì),直線與雙曲線的位置關(guān)系,兩角和的正切公式。
點(diǎn)評(píng):中檔題,涉及直線與圓錐曲線的位置關(guān)系問(wèn)題,往往要利用韋達(dá)定理。弦長(zhǎng)問(wèn)題,往往利用弦長(zhǎng)公式,通過(guò)整體代換,簡(jiǎn)化解題過(guò)程。
| 年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
| 高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
| 高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
| 高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
已知橢圓
的方程為
,點(diǎn)P的坐標(biāo)為(-a,b).
(1)若直角坐標(biāo)平面上的點(diǎn)M、A(0,-b),B(a,0)滿足
,求點(diǎn)
的坐標(biāo);
(2)設(shè)直線
交橢圓
于
、
兩點(diǎn),交直線
于點(diǎn)
.若
,證明:
為
的中點(diǎn);
(3)對(duì)于橢圓
上的點(diǎn)Q(a cosθ,b sinθ)(0<θ<π),如果橢圓
上存在不同的兩個(gè)交點(diǎn)
、
滿足
,寫(xiě)出求作點(diǎn)
、
的步驟,并求出使
、
存在的θ的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
(本小題滿分12分,(Ⅰ)小問(wèn)3分,(Ⅱ)小問(wèn)9分.)
直線
稱為橢圓
的“特征直線”,若橢圓的離心率
.(1)求橢圓的“特征直線”方程;
(2)過(guò)橢圓C上一點(diǎn)
作圓
的切線,切點(diǎn)為P、Q,直線PQ與橢圓的“特征直線”相交于點(diǎn)E、F,O為坐標(biāo)原點(diǎn),若
取值范圍恰為
,求橢圓C的方程.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
(本小題滿分12分)
在平面直角坐標(biāo)系
中,已知三點(diǎn)
,
,
,曲線C上任意—點(diǎn)
滿足:
.
(l)求曲線C的方程;
(2)設(shè)點(diǎn)P是曲線C上的任意一點(diǎn),過(guò)原點(diǎn)的直線L與曲線相交于M,N兩點(diǎn),若直線PM,PN的斜率都存在,并記為
,
.試探究
的值是否與點(diǎn)P及直線L有關(guān),并證明你的結(jié)論;
(3)設(shè)曲線C與y軸交于D、E兩點(diǎn),點(diǎn)M (0,m)在線段DE上,點(diǎn)P在曲線C上運(yùn)動(dòng).若當(dāng)點(diǎn)P的坐標(biāo)為(0,2)時(shí),
取得最小值,求實(shí)數(shù)m的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
(本小題滿分12分)設(shè)直線
與橢圓
相交于
兩個(gè)不同的點(diǎn),與
軸相交于點(diǎn)
,記
為坐標(biāo)原點(diǎn).
(1)證明:![]()
(2)若
且
的面積及橢圓方程.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
(本小題滿分13分)
已知點(diǎn)
為拋物線
:
的焦點(diǎn),
為拋物線
上的點(diǎn),且
.![]()
(Ⅰ)求拋物線
的方程和點(diǎn)
的坐標(biāo);
(Ⅱ)過(guò)點(diǎn)
引出斜率分別為
的兩直線
,
與拋物線
的另一交點(diǎn)為
,
與拋物線
的另一交點(diǎn)為
,記直線
的斜率為
.
(。┤
,試求
的值;
(ⅱ)證明:
為定值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
(本小題滿分13分)
已知點(diǎn)
,
,△
的周長(zhǎng)為6.
(Ⅰ)求動(dòng)點(diǎn)
的軌跡
的方程;
(Ⅱ)設(shè)過(guò)點(diǎn)
的直線
與曲線
相交于不同的兩點(diǎn)
,
.若點(diǎn)
在
軸上,且
,求點(diǎn)
的縱坐標(biāo)的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
(本小題滿分13分)
已知橢圓C的對(duì)稱軸為坐標(biāo)軸,且短軸長(zhǎng)為4,離心率為
。
(Ⅰ)求橢圓C的方程;
(Ⅱ)設(shè)橢圓C的焦點(diǎn)在y軸上,斜率為1的直線l與C相交于A,B兩點(diǎn),且
,求直線l的方程。
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
(本小題滿分12分)已知點(diǎn)F是拋物線C:
的焦點(diǎn),S是拋物線C在第一象限內(nèi)的點(diǎn),且|SF|=
. ![]()
(Ⅰ)求點(diǎn)S的坐標(biāo);
(Ⅱ)以S為圓心的動(dòng)圓與
軸分別交于兩點(diǎn)A、B,延長(zhǎng)SA、SB分別交拋物線C于M、N兩點(diǎn);
①判斷直線MN的斜率是否為定值,并說(shuō)明理由;
②延長(zhǎng)NM交
軸于點(diǎn)E,若|EM|=
|NE|,求cos∠MSN的值.
查看答案和解析>>
國(guó)際學(xué)校優(yōu)選 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com