(本小題滿分12分)已知點(diǎn)F是拋物線C:
的焦點(diǎn),S是拋物線C在第一象限內(nèi)的點(diǎn),且|SF|=
. ![]()
(Ⅰ)求點(diǎn)S的坐標(biāo);
(Ⅱ)以S為圓心的動圓與
軸分別交于兩點(diǎn)A、B,延長SA、SB分別交拋物線C于M、N兩點(diǎn);
①判斷直線MN的斜率是否為定值,并說明理由;
②延長NM交
軸于點(diǎn)E,若|EM|=
|NE|,求cos∠MSN的值.
(Ⅰ)(1,1)(Ⅱ)①
②![]()
解析試題分析:解:(1)設(shè)
(
>0),由已知得F
,則|SF|=
,
∴
=1,∴點(diǎn)S的坐標(biāo)是(1,1)------------------------2分![]()
(2)①設(shè)直線SA的方程為![]()
由
得![]()
∴
,∴
。
由已知SA=SB,∴直線SB的斜率為
,∴
,
∴
--------------7分
②設(shè)E(t,0),∵|EM|=
|NE|,∴
,
∴
,則
∴
--------------------------8分
∴直線SA的方程為
,則
,同理
∴
---------------------------12分
考點(diǎn):拋物線的性質(zhì);直線的斜率公式;向量的坐標(biāo)運(yùn)算;余弦定理。
點(diǎn)評:本題第一小題用了拋物線的性質(zhì),這樣使問題簡化,當(dāng)然,也可以由兩點(diǎn)距離公式來求。第二小題關(guān)鍵要從題意找出直線SA與SB的關(guān)系。
| 年級 | 高中課程 | 年級 | 初中課程 |
| 高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
| 高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
| 高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:解答題
(本題滿分12分)
雙曲線的中心為原點(diǎn)
,焦點(diǎn)在
軸上,兩條漸近線分別為
,經(jīng)過右焦點(diǎn)
垂直于
的直線分別交
于
兩點(diǎn).已知
成等差數(shù)列,且
與
同向.
(Ⅰ)求雙曲線的離心率;
(Ⅱ)設(shè)
被雙曲線所截得的線段的長為4,求雙曲線的方程.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
(本小題滿分14分)如圖,已知直線OP1,OP2為雙曲線E:
的漸近線,△P1OP2的面積為
,在雙曲線E上存在點(diǎn)P為線段P1P2的一個三等分點(diǎn),且雙曲線E的離心率為
.![]()
(1)若P1、P2點(diǎn)的橫坐標(biāo)分別為x1、x2,則x1、x2之間滿足怎樣的關(guān)系?并證明你的結(jié)論;
(2)求雙曲線E的方程;
(3)設(shè)雙曲線E上的動點(diǎn)
,兩焦點(diǎn)
,若
為鈍角,求
點(diǎn)橫坐標(biāo)
的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知圓O:
和定點(diǎn)A(2,1),由圓O外一點(diǎn)
向圓O引切線PQ,切點(diǎn)為Q,且滿足![]()
![]()
(1) 求實(shí)數(shù)a、b間滿足的等量關(guān)系;
(2) 若以P為圓心所作的圓P與圓O有公共點(diǎn),試求半徑取最小值時圓P的方程.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知拋物線的頂點(diǎn)在原點(diǎn),它的準(zhǔn)線過雙曲線
的一個焦點(diǎn),并與雙曲線的實(shí)軸垂直,已知拋物線與雙曲線的交點(diǎn)為
.
(1)求拋物線的方程;
(2)求雙曲線的方程.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知橢圓的兩焦點(diǎn)是F1(0,-1),F(xiàn)2(0,1),離心率e=![]()
(1)求橢圓方程;
(2)若P在橢圓上,且|PF1|-|PF2|=1,求cos∠F1PF2
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
(12分)如圖所示,橢圓C:
的離心率
,左焦點(diǎn)為
右焦點(diǎn)為
,短軸兩個端點(diǎn)為
.與
軸不垂直的直線
與橢圓C交于不同的兩點(diǎn)
、
,記直線
、
的斜率分別為
、
,且
.![]()
(1)求橢圓
的方程;
(2)求證直線
與
軸相交于定點(diǎn),并求出定點(diǎn)坐標(biāo).
(3)當(dāng)弦
的中點(diǎn)
落在
內(nèi)(包括邊界)時,求直線
的斜率的取值。
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
(10分)過直角坐標(biāo)平面
中的拋物線
,直線
過焦點(diǎn)
且與拋物線相交于
,
兩點(diǎn).
⑴當(dāng)直線的傾斜角為
時,用
表示
的長度;
⑵當(dāng)
且三角形
的面積為4時,求直線
的方程.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知橢圓
的離心率為
,其中左焦點(diǎn)
(-2,0).
(1) 求橢圓C的方程;
(2) 若直線y=x+m與橢圓C交于不同的兩點(diǎn)A,B,且線段AB的中點(diǎn)M在圓x2+y2=1上,求m的值.
查看答案和解析>>
國際學(xué)校優(yōu)選 - 練習(xí)冊列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com