【題目】如圖,在三棱柱ABC﹣A1B1C1中,側(cè)面ABB1A1是菱形,且CA=CB1.
![]()
(1)證明:面CBA1⊥面CB1A;
(2)若∠BAA1=60°,A1C=BC=BA1,求二面角C﹣A1B1﹣C1的余弦值.
【答案】(1)證明見解析;(2)
.
【解析】
(1)設(shè)AB1與A1B交于O,連接OC,先證明AB1⊥平面CA1B,再根據(jù)面面垂直的判定定理即可得證;
(2)由A1C=BC,故CO⊥A1B,又(1)知OC⊥AB1,AB1∩A1B=O,故OC⊥平面ABB1A1,以O為原點(diǎn),分別以OA,OB,OC為x,y,z軸建立空間直角坐標(biāo)系,求出平面CA1B1和平面C1A1B1的法向量,利用夾角公式求出即可.
(1)證明:設(shè)AB1與A1B交于O,連接OC,如圖,
因?yàn)閭?cè)面ABB1A1是菱形,所以AB1⊥A1B,
又CA=CB1,所以OC⊥AB1,又A1B∩CO=O,
故AB1⊥平面CA1B,又AB1平面CAB1,
故平面CBA1⊥平面CB1A;
![]()
(2)由A1C=BC,故CO⊥A1B,又(1)知OC⊥AB1,AB1∩A1B=O,
故OC⊥平面ABB1A1,以O為原點(diǎn),分別以OA,OB,OC為x,y,z軸建立空間直角坐標(biāo)系,如圖,
設(shè)A1C=BC=BA1=2,則OC
,
則
,
,A1(0,﹣1,0),B(0,1,0),
由
,得
,
所以
,
,
,
設(shè)平面CA1B1的一個(gè)法向量為
,
由
,得
,
設(shè)平面C1A1B1的一個(gè)法向量為
,
由
,得
,
故cos
,
又二面角C﹣A1B1﹣C1為銳角,
故二面角C﹣A1B1﹣C1的余弦值為
.
| 年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
| 高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
| 高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
| 高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知
,
是橢圓
:
的左右兩個(gè)焦點(diǎn),過
的直線與
交于
,
兩點(diǎn)(
在第一象限),
的周長為8,
的離心率為
.
(1)求
的方程;
(2)設(shè)
,
為
的左右頂點(diǎn),直線
的斜率為
,
的斜率為
,求
的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】平面直角坐標(biāo)系xOy中,已知橢圓C:
的離心率為
,且點(diǎn)
在橢圓C上.橢圓C的左頂點(diǎn)為A.
(1)求橢圓C的方程
(2)橢圓的右焦點(diǎn)且斜率為
的直線與橢圓交于P,Q兩點(diǎn),求三角形APQ的面積;
(3)過點(diǎn)A作直線與橢圓C交于另一點(diǎn)B.若直線
交
軸于點(diǎn)C,且
,求直線
的斜率.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】隨著2022年北京冬奧會(huì)的臨近,中國冰雪產(chǎn)業(yè)快速發(fā)展,冰雪運(yùn)動(dòng)人數(shù)快速上升,冰雪運(yùn)動(dòng)市場(chǎng)需求得到釋放.如圖是2012-2018年中國雪場(chǎng)滑雪人數(shù)(單位:萬人)與同比增長情況統(tǒng)計(jì)圖.則下面結(jié)論中正確的是( )
![]()
①2012-2018年,中國雪場(chǎng)滑雪人數(shù)逐年增加;②2013-2015年,中國雪場(chǎng)滑雪人數(shù)和同比增長率均逐年增加;③中國雪場(chǎng)2015年比2014年增加的滑雪人數(shù)和2018年比2017年增加的滑雪人數(shù)均為220萬人,因此這兩年的同比增長率均有提高;④2016-2018年,中國雪場(chǎng)滑雪人數(shù)的增長率約為23.4%.
A.①②③B.②③④C.①②D.③④
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某市在創(chuàng)建“全國文明衛(wèi)生城市”的過程中,為了調(diào)查市民對(duì)創(chuàng)建“全國文明衛(wèi)生城市”工作的了解情況,進(jìn)行了一次知識(shí)問卷調(diào)查(一位市民只能參加一次).通過隨機(jī)抽樣,得到參加問卷調(diào)查的1000人的得分(滿分100分)統(tǒng)計(jì)結(jié)果如下表所示.
組別 |
|
|
|
|
|
|
|
頻數(shù) | 25 | 150 | 200 | 250 | 225 | 100 | 50 |
(1)該市把得分不低于80分的市民稱為“熱心市民”,若以頻率估計(jì)概率,以樣本估計(jì)總體,求從該市的市民中任意抽取一位,抽到“熱心市民”的概率;
(2)由頻數(shù)分布表可以大致認(rèn)為,此次問卷調(diào)查的得分
服從正態(tài)分布
,
近似為這1000人得分的平均值(同一組數(shù)據(jù)用該組數(shù)據(jù)區(qū)間的中點(diǎn)值表示),請(qǐng)用正態(tài)分布的知識(shí)求
;
(3)在(2)的條件下,該市為此次參加問卷調(diào)查的市民制定如下獎(jiǎng)勵(lì)方案:
(ⅰ)得分不低于
的可以獲贈(zèng)2次隨機(jī)話費(fèi),得分低于
的可以獲贈(zèng)1次隨機(jī)話費(fèi);
(ⅱ)每次獲贈(zèng)送的隨機(jī)話費(fèi)和對(duì)應(yīng)的概率為:
贈(zèng)送的隨機(jī)話費(fèi)(單元:元) | 30 | 60 |
概率 | 0.75 | 0.25 |
現(xiàn)有市民甲要參加此次問卷調(diào)查,記
(單位:元)為該市民參加問卷調(diào)查獲贈(zèng)的話費(fèi),求
的分布列與數(shù)學(xué)期望.
附:參考數(shù)據(jù)與公式
,若
,則①
;
②
;③
.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè)函數(shù)f(x)=|x﹣a|+|x+b|,ab>0.
(1)當(dāng)a=1,b=1時(shí),求不等式f(x)<3的解集;
(2)若f(x)的最小值為2,求
的最小值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】2019年,全國各地區(qū)堅(jiān)持穩(wěn)中求進(jìn)工作總基調(diào),經(jīng)濟(jì)運(yùn)行總體平穩(wěn),發(fā)展水平邁上新臺(tái)階,發(fā)展質(zhì)量穩(wěn)步上升,人民生活福祉持續(xù)增進(jìn),全年最終消費(fèi)支出對(duì)國內(nèi)生產(chǎn)總值增長的貢獻(xiàn)率為57.8%.下圖為2019年居民消費(fèi)價(jià)格月度漲跌幅度:(同比
(本期數(shù)-去年同期數(shù))/去年同期數(shù)
,環(huán)比
(本期數(shù)-上期數(shù))/上期數(shù)![]()
![]()
下列結(jié)論中不正確的是( )
A.2019年第三季度的居民消費(fèi)價(jià)格一直都在增長
B.2018年7月份的居民消費(fèi)價(jià)格比同年8月份要低一些
C.2019年全年居民消費(fèi)價(jià)格比2018年漲了2.5%以上
D.2019年3月份的居民消費(fèi)價(jià)格全年最低
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某中學(xué)長期堅(jiān)持貫徹以人為本,因材施教的教育理念,每年都會(huì)在校文化節(jié)期間舉行“數(shù)學(xué)素養(yǎng)能力測(cè)試”和“語文素養(yǎng)能力測(cè)試”兩項(xiàng)測(cè)試,以給學(xué)生課外興趣學(xué)習(xí)及輔導(dǎo)提供參考依據(jù).成績分為
,
,
,
,
五個(gè)等級(jí)(等級(jí)
,
,
,
,
分別對(duì)應(yīng)5分,4分,3分,2分,1分).某班學(xué)生兩科的考試成績的數(shù)據(jù)統(tǒng)計(jì)如圖所示,其中“語文素養(yǎng)能力測(cè)試”科目的成績?yōu)?/span>
的考生有3人.
![]()
(1)求該班“數(shù)學(xué)素養(yǎng)能力測(cè)試”的科目平均分以及“數(shù)學(xué)素養(yǎng)能力測(cè)試”科目成績?yōu)?/span>
的人數(shù);
(2)若該班共有9人得分大于7分,其中有2人10分,3人9分,4人8分.從這9人中隨機(jī)抽取三人,設(shè)三人的成績之和為
,求
.
(3)從該班得分大于7分的9人中選3人即甲,乙,丙組隊(duì)參加學(xué)校內(nèi)的“數(shù)學(xué)限時(shí)解題挑戰(zhàn)賽”.規(guī)則為:每隊(duì)首先派一名隊(duì)員參加挑戰(zhàn)賽,在限定的時(shí)間,若該生解決問題,即團(tuán)隊(duì)挑戰(zhàn)成功,結(jié)束挑戰(zhàn);若解決問題失敗,則派另外一名隊(duì)員上去挑戰(zhàn),直至派完隊(duì)員為止.通過訓(xùn)練,已知甲,乙,丙通過挑戰(zhàn)賽的概率分別是
,
,
,問以怎樣的先后順序派出隊(duì)員,可使得派出隊(duì)員數(shù)目的均值達(dá)到最?(只需寫出結(jié)果)
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知三棱錐
的棱長均為6,其內(nèi)有
個(gè)小球,球
與三棱錐
的四個(gè)面都相切,球
與三棱錐
的三個(gè)面和球
都相切,如此類推,…,球
與三棱錐
的三個(gè)面和球
都相切(
,且
),則球
的體積等于__________,球
的表面積等于__________.
查看答案和解析>>
國際學(xué)校優(yōu)選 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com