分析 根據(jù)-1≤cosx≤1,討論a的取值,利用函數(shù)y=2+acosx的最大值為列出方程求出a的值.
解答 解:∵-1≤cosx≤1,
∴當(dāng)a>0時(shí),函數(shù)y=2+acosx的最大值為2+a=5,解得a=3;
當(dāng)a=0時(shí),函數(shù)y=2,不滿(mǎn)足題意;
當(dāng)a<0時(shí),函數(shù)y=2+acosx的最大值為2-a=5,解得a=-3;
綜上,a的值是3或-3.
點(diǎn)評(píng) 本題考查了余弦函數(shù)的最值應(yīng)用問(wèn)題,是基礎(chǔ)題目.
| 年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
| 高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
| 高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
| 高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
| A. | 2-i | B. | 2+i | C. | -2+i | D. | -2-i |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
| A. | y=sin($\frac{x}{2}$+$\frac{π}{6}$) | B. | y=cos(2x+$\frac{π}{3}$) | C. | y=cos(2x-$\frac{π}{6}$) | D. | y=sin(2x-$\frac{π}{6}$) |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
| A. | [1,$\sqrt{2}$] | B. | [0,2$\sqrt{2}$] | C. | [1,$\sqrt{3}$] | D. | [0,2] |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
| A. | 3-2$\sqrt{2}$ | B. | $\sqrt{2}-1$ | C. | 3+2$\sqrt{2}$ | D. | $\sqrt{2}+1$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
| A. | 16 | B. | 32 | C. | 31 | D. | 36 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
國(guó)際學(xué)校優(yōu)選 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話(huà):027-86699610 舉報(bào)郵箱:58377363@163.com