欧美日韩黄网欧美日韩日B片|二区无码视频网站|欧美AAAA小视频|久久99爱视频播放|日本久久成人免费视频|性交黄色毛片特黄色性交毛片|91久久伊人日韩插穴|国产三级A片电影网站|亚州无码成人激情视频|国产又黄又粗又猛又爽的

3.已知在△ABC中,C=$\frac{π}{4}$,cosB=$\frac{3}{5}$,AB=5,則sinA=$\frac{7\sqrt{2}}{10}$;△ABC的面積為14.

分析 由C=$\frac{π}{4}$,cosB=$\frac{3}{5}$,可得sinC=cosC=$\frac{\sqrt{2}}{2}$,sinB=$\sqrt{1-co{s}^{2}B}$,sinA=sin(B+C)=sinBcosC+cosBsinC.由正弦定理可得:$\frac{c}{sinC}=\frac{sinB}$,可得b=$\frac{csinB}{sinC}$,再利用三角形面積計算公式即可得出.

解答 解:∵C=$\frac{π}{4}$,cosB=$\frac{3}{5}$,
∴sinC=cosC=$\frac{\sqrt{2}}{2}$,sinB=$\sqrt{1-co{s}^{2}B}$=$\frac{4}{5}$.
∴sinA=sin(B+C)=sinBcosC+cosBsinC=$\frac{4}{5}×\frac{\sqrt{2}}{2}+\frac{3}{5}×\frac{\sqrt{2}}{2}$=$\frac{7\sqrt{2}}{10}$.
由正弦定理可得:$\frac{c}{sinC}=\frac{sinB}$,可得b=$\frac{csinB}{sinC}$=$\frac{5×\frac{4}{5}}{\frac{\sqrt{2}}{2}}$=4$\sqrt{2}$,
∴S=$\frac{1}{2}×5×4\sqrt{2}$×$\frac{7\sqrt{2}}{10}$=14.
故答案分別為:$\frac{7\sqrt{2}}{10}$,14.

點評 本題考查了正弦定理的應用、同角三角函數(shù)基本關系式、兩角和差的正弦公式,考查了推理能力與計算能力,屬于中檔題.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:選擇題

13.在△ABC中,角A,B,C所對的邊分別是a,b,c,已知sin(B+A)+sin(B-A)=2sin2A,且c=$\sqrt{7}$,C=$\frac{π}{3}$,則△ABC的面積是( 。
A.$\frac{3\sqrt{3}}{4}$B.$\frac{7\sqrt{3}}{6}$C.$\frac{\sqrt{21}}{3}$D.$\frac{3\sqrt{3}}{4}$或$\frac{7\sqrt{3}}{6}$

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

14.已知A(-2,0),B(2,0),動點P與A、B兩點連線的斜率分別為kPA和kPB,且滿足kPA•kPB=t (t≠0且t≠-1).
(1)求動點P的軌跡C的方程;
(2)當t<0時,曲線C的兩焦點為F1,F(xiàn)2,若曲線C上存在點Q使得∠F1QF2=120°,求t的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

11.在△ABC中,A=30°,BC=2$\sqrt{5}$,點D在AB邊上,且∠BCD為銳角,CD=2,△BCD的面積為4.
(Ⅰ)求cos∠BCD的值;
(Ⅱ)求邊AC的長.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

18.已知非零平面向量$\overrightarrow{a}$,$\overrightarrow$,則“$\overrightarrow{a}$與$\overrightarrow$共線”是“$\overrightarrow{a}$+$\overrightarrow$與$\overrightarrow{a}$-$\overrightarrow$共線”的( 。
A.充分而不必要條件B.必要而不充分條件
C.充分必要條件D.既不充分也不必要條件

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

8.某學科測試,要求考生從A,B,C三道試題中任選一題作答.考試結束后,統(tǒng)計數(shù)據(jù)顯示共有420名學生參加測試,選擇A,B,C題作答的人數(shù)如表:
試題ABC
人數(shù)180120120
(Ⅰ)某教師為了解參加測試的學生答卷情況,現(xiàn)用分層抽樣的方法從420份試卷中抽出若干試卷,其中從選擇A題作答的試卷中抽出了3份,則應從選擇B,C題作答的試卷中各抽出多少份?
(Ⅱ)若在(Ⅰ)問被抽出的試卷中,選擇A,B,C題作答得優(yōu)的試卷分別有2份,2份,1份.現(xiàn)從被抽出的選擇A,B,C題作答的試卷中各隨機選1份,求這3份試卷都得優(yōu)的概率.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

15.設集合A={(m1,m2,m3)|m2∈{-2,0,2},mi=1,2,3}},集合A中所有元素的個數(shù)為27;集合A 中滿足條件“2≤|m1|+|m2|+|m3|≤5”的元素個數(shù)為18.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

12.已知函數(shù)f(x)=Asin(ωx+φ)(其中A,ω,φ為常數(shù),且A>0,ω>0,$-\frac{π}{2}<φ<\frac{π}{2}$)的部分圖象如圖所示.
(1)求函數(shù)f(x)的解析式;
(2)若f(α)=$\frac{3}{2}$,求sin(2α+$\frac{π}{6}}$)的值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

13.雙曲線$\frac{{y}^{2}}{{a}^{2}}$-$\frac{{x}^{2}}{^{2}}$=1的漸近線方程為y=±$\frac{1}{2}x$,則它的離心率為$\sqrt{5}$.

查看答案和解析>>

同步練習冊答案