分析 (1)根據對數函數的性質解關于x的不等式即可求出集合A,B,取交集即可;(2)根據集合的包含關系得到關于a的不等式組,解出即可.
解答 解:(1)由$(2x-3)(x-1)>0⇒x>\frac{3}{2}$或x<1,
∴$A=(-∞,1)∪(\frac{3}{2},+∞)$
當a=1時,由-x2+4x-3≥0⇒1≤x≤3,
∴B=[1,3],
∴$A∩B=(\frac{3}{2},3]$
(2)當a>0時B=[a,3a],
若A∩B=B⇒B⊆A,
∴$\left\{\begin{array}{l}a>0\\ 3a<1\end{array}\right.$或$a>\frac{3}{2}$,
解得$0<a<\frac{1}{3}$或$a>\frac{3}{2}$,
故a的取值范圍是$(0,\frac{1}{3})∪(\frac{3}{2},+∞)$.
點評 本題考查了對數函數的性質,考查集合的運算,是一道基礎題.
科目:高中數學 來源: 題型:選擇題
| A. | [3,6] | B. | [3,7] | C. | [4,6] | D. | [0,7] |
查看答案和解析>>
科目:高中數學 來源: 題型:選擇題
| A. | $\frac{5\sqrt{3}}{2}$ | B. | $\frac{3\sqrt{5}}{2}$ | C. | $\frac{\sqrt{37}}{2}$ | D. | $\frac{\sqrt{21}}{2}$ |
查看答案和解析>>
科目:高中數學 來源: 題型:選擇題
| A. | 4 | B. | 5 | C. | 6 | D. | 7 |
查看答案和解析>>
科目:高中數學 來源: 題型:解答題
查看答案和解析>>
科目:高中數學 來源: 題型:解答題
查看答案和解析>>
國際學校優(yōu)選 - 練習冊列表 - 試題列表
湖北省互聯(lián)網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com