欧美日韩黄网欧美日韩日B片|二区无码视频网站|欧美AAAA小视频|久久99爱视频播放|日本久久成人免费视频|性交黄色毛片特黄色性交毛片|91久久伊人日韩插穴|国产三级A片电影网站|亚州无码成人激情视频|国产又黄又粗又猛又爽的

8.已知函數(shù)f(x)=ex,則f′(0)的值為1.

分析 先求導(dǎo),再帶值計(jì)算即可.

解答 解:f′(x)=(ex)′=ex,
∴f′(0)=1.
故答案為:1.

點(diǎn)評(píng) 本題考查了常用求導(dǎo)公式,以及函數(shù)值的求法,屬于基礎(chǔ)題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

18.甲、乙兩人參加某單位招聘面試測(cè)試,每次測(cè)試從試題庫(kù)隨機(jī)用一套試題,他們參加的5項(xiàng)測(cè)試成績(jī)記錄如下:
8282799587
9575809085
(1)用莖葉圖表示甲、乙這5項(xiàng)測(cè)試成績(jī);
(2)從甲、乙兩人的成績(jī)中各隨機(jī)抽取一個(gè),求甲的成績(jī)比乙高的概率;
(3)現(xiàn)要根據(jù)測(cè)試成績(jī)選擇一人到該單位,從統(tǒng)計(jì)學(xué)的角度考慮,你認(rèn)為選擇哪位合適,說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

19.如圖三角形OAB為用斜二測(cè)畫(huà)法所畫(huà)的直觀圖,其原來(lái)平面圖形的面積是( 。
A.4B.4$\sqrt{2}$C.2$\sqrt{2}$D.8

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

16.已知$tanα=\frac{1}{2}$,則$\frac{{2{{cos}^2}\frac{α}{2}-sinα-1}}{{\sqrt{2}sin(\frac{π}{4}+α)}}$的值為( 。
A.$\frac{4}{3}$B.-3C.$\frac{1}{3}$D.3

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

3.函數(shù)f(x)=(-x2+2x)ex
(1)求函數(shù)f(x)的單調(diào)區(qū)間;
(2)求函數(shù)f(x)在區(qū)間[-1,2]上的最大值和最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

13.設(shè)$\overrightarrow{{e}_{1}}$,$\overrightarrow{{e}_{2}}$是不共線的兩個(gè)向量,有下列四組向量:
①$\overrightarrow{a}$=$\overrightarrow{{e}_{1}}$-$\overrightarrow{{e}_{2}}$;$\overrightarrow$=-2$\overrightarrow{{e}_{1}}$+2$\overrightarrow{{e}_{2}}$;
②$\overrightarrow{a}$=$\overrightarrow{{e}_{1}}$+$\overrightarrow{{e}_{2}}$,$\overrightarrow$=2$\overrightarrow{{e}_{1}}$-2$\overrightarrow{{e}_{2}}$;
③$\overrightarrow{a}$=2$\overrightarrow{{e}_{1}}$-$\frac{1}{3}$$\overrightarrow{{e}_{2}}$,$\overrightarrow$=-$\overrightarrow{{e}_{1}}$-$\frac{1}{6}$$\overrightarrow{{e}_{2}}$;
④$\overrightarrow{a}$=2$\overrightarrow{{e}_{1}}$,$\overrightarrow$=-3$\overrightarrow{{e}_{1}}$,
其中$\overrightarrow{a}$與$\overrightarrow$共線的組數(shù)為( 。
A.1B.2C.3D.4

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

20.3個(gè)不同的球放入編號(hào)為1,2,3的三個(gè)盒子中,每個(gè)盒子中球的個(gè)數(shù)不大于盒子的編號(hào),則共有19種方法(用數(shù)字作答).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

17.已知$tanx=\frac{1}{2}$,求下列各式的值:
(1)$\frac{sinx-3cosx}{sinx+cosx}$
(2)cos2x-sinx•cosx.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

18.已知sina+cosa=$\frac{\sqrt{3}}{2}$,且a∈(0,π),則sinacosa的值為( 。
A.-$\frac{1}{8}$B.$\frac{1}{8}$C.±$\frac{1}{8}$D.-$\frac{1}{4}$

查看答案和解析>>

同步練習(xí)冊(cè)答案