分析 確定直線AB的方程,求出圓O到直線AB的距離,利用|AB|=$\frac{{4\sqrt{5}}}{5}$,建立方程,即可求出m的值.
解答 解:由圓O:x2+y2=1和圓C:x2+y2-2x-4y+m=0,可得直線AB的方程-2x-4y+m+1=0,
圓O到直線AB的距離為d=$\frac{|m+1|}{\sqrt{4+16}}$=$\frac{|m+1|}{2\sqrt{5}}$,
∵|AB|=$\frac{{4\sqrt{5}}}{5}$,
∴2$\sqrt{1-\frac{(m+1)^{2}}{20}}$=$\frac{{4\sqrt{5}}}{5}$,
解得m=1或-3.
故答案為:1或-3.
點評 本題考查圓與圓、直線與圓的位置關(guān)系,考查點到直線距離公式的運用,考查學(xué)生的計算能力,屬于中檔題.
科目:高中數(shù)學(xué) 來源: 題型:選擇題
| A. | $\frac{π}{4}$ | B. | $\frac{3π}{4}$ | C. | $\frac{π}{4}$或$\frac{3π}{4}$ | D. | $\frac{π}{2}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
| A. | k≥$\frac{3}{4}$或k≤-4 | B. | k≥$\frac{3}{4}或k≤-\frac{1}{4}$ | C. | -4≤k≤$\frac{3}{4}$ | D. | $\frac{3}{4}$≤k≤4 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
| A. | A>B | B. | A≥B | C. | A<B | D. | A≤B |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
| A. | $-\frac{1}{2}$ | B. | $\frac{1}{2}$ | C. | $\frac{{\sqrt{2}}}{2}$ | D. | $-\frac{{\sqrt{2}}}{2}$ |
查看答案和解析>>
國際學(xué)校優(yōu)選 - 練習(xí)冊列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com