| A. | ($\frac{\sqrt{10}}{5}$,$\frac{3\sqrt{10}}{5}$) | B. | (-$\frac{\sqrt{10}}{5}$,-$\frac{3\sqrt{10}}{5}$) | C. | ($\frac{\sqrt{10}}{5}$,-$\frac{3\sqrt{10}}{5}$) | D. | (-$\frac{\sqrt{10}}{5}$,$\frac{3\sqrt{10}}{5}$) |
分析 根據(jù)三角形內(nèi)角平分線定理,求出OC所在直線分有線向量AB所成的比.然后代入定比分點(diǎn)公式求出OC與AB的交點(diǎn)坐標(biāo),再根據(jù)向量的模求出答案.
解答 解:∵A(0,1),B(-3,4),|$\overrightarrow{OA}$|=1,|$\overrightarrow{OB}$|=5,設(shè)OC與AB交于D(x,y)點(diǎn),
則有AD:BD=1:5,
即D分有向線段AB所成的比為$\frac{1}{5}$,故有x=$\frac{0+\frac{1}{5}×(-3)}{1+\frac{1}{5}}$=-$\frac{1}{2}$,y=$\frac{1+\frac{1}{5}×4}{1+\frac{1}{5}}$=$\frac{3}{2}$,$\overrightarrow{OD}$
則$\overrightarrow{OD}$=(-$\frac{1}{2}$,$\frac{3}{2}$),|$\overrightarrow{OD}$|=$\frac{\sqrt{5}}{2}$.
由|$\overrightarrow{OC}$|=2,可得$\overrightarrow{OC}$=2•$\frac{\overrightarrow{OD}}{|\overrightarrow{OD}|}$=(-$\frac{\sqrt{10}}{5}$,$\frac{3\sqrt{10}}{5}$),
故選:D.
點(diǎn)評(píng) 本題考查的知識(shí)點(diǎn)是線段的定比分點(diǎn),有向線段A(x1,y1),B(x2,y2).及點(diǎn)C分線段AB所成的比,求分點(diǎn)C的坐標(biāo),可將A,B兩點(diǎn)的坐標(biāo)代入定比分點(diǎn)坐標(biāo)公式:坐標(biāo)公式$\left\{\begin{array}{l}{x=\frac{{x}_{1}+λ{(lán)•x}_{2}}{1+λ}}\\{y=\frac{{y}_{1}+λ{(lán)•y}_{2}}{1+λ}}\end{array}\right.$進(jìn)行求解,屬于中檔題.
| 年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
| 高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
| 高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
| 高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
國(guó)際學(xué)校優(yōu)選 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com