欧美日韩黄网欧美日韩日B片|二区无码视频网站|欧美AAAA小视频|久久99爱视频播放|日本久久成人免费视频|性交黄色毛片特黄色性交毛片|91久久伊人日韩插穴|国产三级A片电影网站|亚州无码成人激情视频|国产又黄又粗又猛又爽的

4.已知橢圓C的中心為原點(diǎn),焦點(diǎn)F1,F(xiàn)2在x軸上,焦距為6,過F1的直線l交橢圓C于A,B兩點(diǎn),且ABF2的周長為16,那么橢圓C的方程為$\frac{{x}^{2}}{16}$+$\frac{{y}^{2}}{7}$=1.

分析 由題意可得c=3,再由橢圓的定義與性質(zhì),求出a、b的值,即可寫出橢圓的方程.

解答 解:設(shè)橢圓的長軸是2a,短軸是2b,焦距是2c,
由題意可得2c=6,解得c=3,
∴由橢圓的定義可得4a=|AF1|+|AF2|+|BF1|+|BF2|=16,
∴a=4,
∴b=$\sqrt{{a}^{2}-{c}^{2}}$=$\sqrt{16-9}$=$\sqrt{7}$,
∴橢圓的方程是$\frac{{x}^{2}}{16}$+$\frac{{y}^{2}}{7}$=1.
故答案為:$\frac{{x}^{2}}{16}$+$\frac{{y}^{2}}{7}$=1.

點(diǎn)評 本題考查橢圓的定義和性質(zhì),注意運(yùn)用橢圓的定義法是解題的關(guān)鍵,屬于基礎(chǔ)題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

10.已知橢圓C:$\frac{x^2}{a^2}+\frac{y^2}{b^2}$=1(a>b>0)的離心率為$\frac{{\sqrt{6}}}{3}$,焦距為4,定點(diǎn)A(-4,0).
(Ⅰ)求橢圓C標(biāo)準(zhǔn)方程;
(Ⅱ)已知P(x1,y1),Q(x2,y2)是橢圓C上的兩點(diǎn),向量$\overrightarrow m=({x_1},\sqrt{3}{y_1}),\overrightarrow n=({x_2},\sqrt{3}{y_2})$,且$\overrightarrow m•\overrightarrow n=0$.設(shè)B(x0,y0),且$\overrightarrow{OB}=cosθ•\overrightarrow{OP}+sinθ•\overrightarrow{OQ}$(θ∈R),求x02+3y02的值;
(Ⅲ)如圖所示,直線MN經(jīng)過橢圓C右焦點(diǎn)F.當(dāng)M、N兩點(diǎn)在橢圓C運(yùn)動時,試判斷$\overrightarrow{AM}•\overrightarrow{AN}$×tan∠MAN是否有最大值,若存在求出最大值,并求出這時M、N兩點(diǎn)所在直線方程,若不存在,給出理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

11.已知點(diǎn)A(3,0),點(diǎn)P在圓x2+y2=1的上半圓周上,O為坐標(biāo)原點(diǎn),∠AOP的平分線交PA于點(diǎn)Q,求點(diǎn)Q的軌跡方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

8.已知α,β滿足方程acosx+bsinx=c,其中a,b,c為常數(shù),且a2+b2≠0,求證:當(dāng)α≠β時,4cos2$\frac{α}{2}$cos2$\frac{β}{2}$=$\frac{(a+c)^{2}}{{a}^{2}+^{2}}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

15.某射手平時射擊成績統(tǒng)計如表:
環(huán)數(shù)7環(huán)以下78910
概率0.13ab0.250.24
已知他射中7環(huán)及7環(huán)以下的概率為0.29.
(1)求a和b的值;
(2)求命中10環(huán)或9環(huán)的概率;
(3)求命中環(huán)數(shù)不足9環(huán)的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

9.已知橢圓C:$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{^{2}}$=1(a>b>0)的離心率為$\frac{\sqrt{6}}{3}$,橢圓短軸長為$\frac{{2\sqrt{15}}}{3}$.
(1)求橢圓C的方程;
(2)已知動直線y=k(x+1)與橢圓C相交于A、B兩點(diǎn),若點(diǎn)M(-$\frac{7}{3}$,0),求證:$\overrightarrow{MA}•\overrightarrow{MB}$為定值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

16.如圖,O為坐標(biāo)原點(diǎn),橢圓C1:$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{^{2}}$=1(a>b>0)的左右焦點(diǎn)分別為F1F2,離心率為e1;雙曲線C2:$\frac{{x}^{2}}{{a}^{2}}$$-\frac{{y}^{2}}{^{2}}$=1(a>b>0)的左右焦點(diǎn)分別為3F4,離心率為e2,已知e1e2=$\frac{\sqrt{3}}{2}$,且|F2F4|=$\sqrt{3}$-1.
(1)求C1,C2的方程;
(2)過F1作C1的不垂直于y軸的弦AB,M為AB的中點(diǎn),當(dāng)直線OM與C2交于P,Q兩點(diǎn)時,求四邊形APBQ面積的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

13.若a<b<0,則下列結(jié)論一定正確的是( 。
A.$\frac{a+b}{2}$>$\sqrt{ab}$B.$\frac{1}{|a|}$>$\frac{1}{|b|}$C.ac2<bc2D.(a+$\frac{1}$)2>(b+$\frac{1}{a}$)2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

14.若關(guān)于x的不等式x2-ax+2<0的解集是(1,2),則a=3.

查看答案和解析>>

同步練習(xí)冊答案