分析 (Ⅰ)由已知數(shù)列遞推式得Sn-1=(n-1)an-1-(n-1)(n-2)(n≥2),與原遞推式作差,可得an-an-1=2(n≥2),則數(shù)列{an}是以a1=1為首項,以2為公差的等差數(shù)列,代入等差數(shù)列的通項公式求得{an}的通項公式;
(Ⅱ)把(Ⅰ)中求得的通項公式代入bn=$\frac{2}{{a}_{n}{a}_{n+1}}$,然后利用裂項相消法求數(shù)列的前n項和.
解答 解:(Ⅰ)∵Sn=nan-n(n-1),∴Sn-1=(n-1)an-1-(n-1)(n-2)(n≥2),
列式相減得:an=nan-(n-1)an-1-2(n-1),即an-an-1=2(n≥2),
∴數(shù)列{an}是以a1=1為首項,以2為公差的等差數(shù)列,
∴an=1+2(n-1)=2n-1;
(Ⅱ)bn=$\frac{2}{{a}_{n}{a}_{n+1}}$=$\frac{2}{(2n-1)(2n+1)}=\frac{1}{2n-1}-\frac{1}{2n+1}$,
∴Tn=b1+b2+…+bn=$(1-\frac{1}{3})+(\frac{1}{3}-\frac{1}{5})+…+(\frac{1}{2n-1}-\frac{1}{2n+1})$
=$1-\frac{1}{2n+1}=\frac{2n}{2n+1}$.
點評 本題考查數(shù)列遞推式,考查了等差關系的確定,訓練了裂項相消法求數(shù)列的前n項和,是中檔題.
科目:高中數(shù)學 來源: 題型:選擇題
| A. | 充分不必要條件 | B. | 必要不充分條件 | ||
| C. | 充要條件 | D. | 既不充分也不必要條件 |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
| A. | sin($\frac{π}{2}$+A) | B. | sin($\frac{3π}{2}$-A) | C. | cos($\frac{π}{2}$+A) | D. | cos($\frac{π}{2}$-A) |
查看答案和解析>>
國際學校優(yōu)選 - 練習冊列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com