分析 (1)通過a1=1,進而表示出b2=a2=1+d、b3=a5=1+4d、b4=a14=1+13d,利用${_{3}}^{2}$=b2b4計算可知d=2,從而an=2n-1,進而可知等比數列{bn}的公比q=3,計算即得結論;
(2)通過$\frac{{c}_{1}}{_{1}}$+$\frac{{c}_{2}}{_{2}}$+…+$\frac{{c}_{n}}{_{n}}$=an+1與$\frac{{c}_{1}}{_{1}}$+$\frac{{c}_{2}}{_{2}}$+…+$\frac{{c}_{n-1}}{_{n-1}}$=an作差,整理可知cn=2•3n-1,進而可知數列{cn}的通項公式,利用等比數列的求和公式計算即得結論.
解答 解:(1)依題意,b2=a2=1+d,
b3=a5=1+4d,b4=a14=1+13d,
∵${_{3}}^{2}$=b2b4,
∴(1+4d)2=(1+d)(1+13d),
解得:d=2或d=0(舍),
∴an=1+2(n-1)=2n-1,
∵等比數列{bn}的公比q=$\frac{_{3}}{_{2}}$=$\frac{{a}_{5}}{{a}_{2}}$=$\frac{9}{3}$=3,
∴bn=3•3n-2=3n-1;
(2)∵$\frac{{c}_{1}}{_{1}}$+$\frac{{c}_{2}}{_{2}}$+…+$\frac{{c}_{n}}{_{n}}$=an+1,
∴當n≥2時,$\frac{{c}_{1}}{_{1}}$+$\frac{{c}_{2}}{_{2}}$+…+$\frac{{c}_{n-1}}{_{n-1}}$=an,
兩式相減得:$\frac{{c}_{n}}{_{n}}$=an+1-an=2,
∴cn=2bn=2•3n-1,
又∵c1=a2b1=3不滿足上式,
∴cn=$\left\{\begin{array}{l}{3,}&{n=1}\\{2•{3}^{n-1},}&{n≥2}\end{array}\right.$,
∴c1+c2+c3+…+c2015=3+$\frac{6(1-{3}^{2014})}{1-3}$
=3-3+32015
=32015.
點評 本題考查數列的通項及前n項和,考查運算求解能力,注意解題方法的積累,屬于中檔題.
科目:高中數學 來源: 題型:解答題
查看答案和解析>>
科目:高中數學 來源: 題型:解答題
查看答案和解析>>
科目:高中數學 來源: 題型:選擇題
| A. | -1 | B. | -2 | C. | 1 | D. | 2 |
查看答案和解析>>
科目:高中數學 來源: 題型:選擇題
| A. | -1 | B. | 0 | C. | 1 | D. | 2 |
查看答案和解析>>
國際學校優(yōu)選 - 練習冊列表 - 試題列表
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com