欧美日韩黄网欧美日韩日B片|二区无码视频网站|欧美AAAA小视频|久久99爱视频播放|日本久久成人免费视频|性交黄色毛片特黄色性交毛片|91久久伊人日韩插穴|国产三级A片电影网站|亚州无码成人激情视频|国产又黄又粗又猛又爽的

9.若變量x,y滿足約束條件$\left\{\begin{array}{l}{x≥1}\\{x+y-4≤0}\\{x-y≤0}\end{array}\right.$,則$\frac{y}{x}$的最大值為( 。
A.2B.3C.$\frac{4}{3}$D.5

分析 作出不等式組對(duì)應(yīng)的平面區(qū)域,利用目標(biāo)函數(shù)的幾何意義,即可求z的取值范圍.

解答 解:作出不等式組對(duì)應(yīng)的平面區(qū)域,
$\frac{y}{x}$的幾何意義為區(qū)域內(nèi)的點(diǎn)到原點(diǎn)的斜率,
由圖象知,OA的斜率最大,
由$\left\{\begin{array}{l}{x=1}\\{x+y-4=0}\end{array}\right.$,得$\left\{\begin{array}{l}{x=1}\\{y=3}\end{array}\right.$,即A(1,3),
故OA的斜率k=$\frac{3}{1}$=3.
故選:B

點(diǎn)評(píng) 本題主要考查線性規(guī)劃和直線斜率的應(yīng)用,利用目標(biāo)函數(shù)的幾何意義,結(jié)合數(shù)形結(jié)合的數(shù)學(xué)思想是解決此類問題的基本方法.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

19.在平面直角坐標(biāo)系xOy中,已知橢圓C的中心在原點(diǎn)O,焦點(diǎn)在x軸上,短軸長(zhǎng)為2,離心率為$\frac{\sqrt{2}}{2}$,過左頂點(diǎn)A的直線l與橢圓交于另一點(diǎn)B.
(Ⅰ)求橢圓C的方程;
(Ⅱ)若|AB|=$\frac{4}{3}$,求直線l的傾斜角.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

20.已知⊙C的極坐標(biāo)方程為:ρ2-4$\sqrt{2}ρsin(θ+\frac{π}{4})+6=0$
(Ⅰ)求圓C在直角坐標(biāo)系中的圓心坐標(biāo),并選擇合適的參數(shù),寫出圓C的參數(shù)方程;
(Ⅱ)點(diǎn)P(x,y)在圓C上,試求u=xy的值域.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

17.一臺(tái)儀器每啟動(dòng)一次都隨機(jī)地出現(xiàn)一個(gè)5位的二進(jìn)制數(shù)$A=\overline{{a_1}{a_2}{a_3}{a_4}{a_5}}$,其中A的各位數(shù)字中a1=1,ak(k=2,3,4,5)出現(xiàn)0的概率為$\frac{1}{3}$,ak(k=2,3,4,5)出現(xiàn)1的概率為$\frac{2}{3}$,記X=a1+a2+a3+a4+a5.當(dāng)啟動(dòng)儀器一次時(shí),
(Ⅰ)求X=3的概率;
(Ⅱ)求隨機(jī)變量X的分布列及X的數(shù)學(xué)期望,并指出當(dāng)X為何值時(shí),其概率最大.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

4.若f(x)為定義在區(qū)間G上的任意兩點(diǎn)x1,x2和任意實(shí)數(shù)λ(0,1),總有f(λx1+(1-λ)x2)≤λf(x1)+(1-λ)f(x2),則稱這個(gè)函數(shù)為“上進(jìn)”函數(shù),下列函數(shù)是“上進(jìn)”函數(shù)的個(gè)數(shù)是( 。
①f(x)=$\frac{x}{{e}^{x}}$,②f(x)=$\sqrt{x}$,③f(x)=$\frac{ln(x+1)}{x}$,④f(x)=$\frac{x}{{x}^{2}+1}$.
A.4B.3C.2D.1

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

14.已知過點(diǎn)M(-3,0)的直線l被圓x2+(y+2)2=25所截得的弦長(zhǎng)為8,那么直線l的方程為x=-3或5x-12y+15=0.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

1.已知直線l與直線y=x垂直,則直線l的斜率為-1.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

18.定義運(yùn)算$|{\begin{array}{l}a&b\\ c&d\end{array}}|=ad-bc$,函數(shù)$f(x)=|{\begin{array}{l}{2sinx}&m\\{cos2x}&{cosx}\end{array}}|$的圖象關(guān)于直線x=$\frac{π}{8}$對(duì)稱,則f(x)的單調(diào)遞增區(qū)間為( 。
A.$[kπ-\frac{3π}{8},kπ+\frac{π}{8}],(k∈Z)$B.$[kπ-\frac{π}{8},kπ+\frac{3π}{8}],(k∈Z)$
C.$[2kπ-\frac{3π}{4},2kπ+\frac{π}{4}],(k∈Z)$D.$[2kπ-\frac{π}{4},2kπ+\frac{3π}{4}],(k∈Z)$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

19.若函數(shù)f(x)在定義域的某子區(qū)間上滿足f(x)=$\frac{1}{λ}f({x-λ})$(λ為正實(shí)數(shù)),則稱其為λ-局部倍縮函數(shù).若函數(shù)f(x)在x∈[0,2]時(shí),f(x)=sinπx,且x∈(2,+∞)時(shí),f(x)為λ=2的局部倍縮函數(shù).現(xiàn)有下列4個(gè)命題:
①任取x1、x2∈[0,+∞),都有|f(x1)-f(x2)|≤2恒成立;
②f(x)=2kf(x+2k)(k∈N*),對(duì)于一切x∈[0,+∞)恒成立;③函數(shù)y=f(x)-ln(x-1)有5個(gè)零點(diǎn);④對(duì)任意x>0,若不等式f(x)≤$\frac{k}{x}$恒成立,則k的最小值是$\frac{5}{4}$.
則其中所有真命題的序號(hào)是①④.

查看答案和解析>>

同步練習(xí)冊(cè)答案