分析 (1)由知得PD⊥平面ACD,PD=1,由此能求出三棱錐P-ACD的體積.
(2)設(shè)點(diǎn)D到平面PAC的距離為h,由VD-PAC=VP-ACD,能求出點(diǎn)D到平面PAC的距離.
解答 解:(1)∵長(zhǎng)方體ABCD-A1B1C1D1中,AB=AD=1,AA1=2,點(diǎn)P為DD1的中點(diǎn),![]()
∴PD⊥平面ACD,PD=1,${S}_{△ACD}=\frac{1}{2}×1×1$=$\frac{1}{2}$,
∴三棱錐P-ACD的體積V=$\frac{1}{3}×{S}_{△ACD}×PD$=$\frac{1}{3}×\frac{1}{2}×1$=$\frac{1}{6}$.
(2)∵長(zhǎng)方體ABCD-A1B1C1D1中,AB=AD=1,AA1=2,點(diǎn)P為DD1的中點(diǎn),
∴PC=PA=$\sqrt{1+1}$=$\sqrt{2}$,AC=$\sqrt{1+1}$=$\sqrt{2}$,
∴${S}_{△PAC}=\frac{1}{2}×\sqrt{2}×\sqrt{2}×sin60°$=$\frac{\sqrt{3}}{2}$,
設(shè)點(diǎn)D到平面PAC的距離為h,
∵VD-PAC=VP-ACD,
∵三棱錐P-ACD的體積V=$\frac{1}{6}$.
∴$\frac{1}{3}×{S}_{△PAC}×h=\frac{1}{6}$,
∴h=$\frac{\frac{1}{6}}{\frac{1}{3}×\frac{\sqrt{3}}{2}}$=$\frac{\sqrt{3}}{3}$.
∴點(diǎn)D到平面PAC的距離為$\frac{\sqrt{3}}{3}$.
點(diǎn)評(píng) 本題考查三棱錐的體積的求法,考查點(diǎn)到平面的距離的求法,是基礎(chǔ)題,解題時(shí)要認(rèn)真審題,注意等體積法的合理運(yùn)用.
| 年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
| 高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
| 高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
| 高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源:2015-2016學(xué)年遼寧大連十一中高一下學(xué)期段考二試數(shù)學(xué)(文)試卷(解析版) 題型:選擇題
若關(guān)于
的方程
恒有實(shí)數(shù)解,則實(shí)數(shù)
的取值范圍是( )
A.
B.
C.
D. ![]()
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
| A. | $\sqrt{3}$ | B. | $\sqrt{6}$ | C. | $\frac{\sqrt{6}}{2}$ | D. | $\frac{\sqrt{7}}{2}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
| A. | 30° | B. | 150° | C. | 30°或150° | D. | 不確定 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
國(guó)際學(xué)校優(yōu)選 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com