| A. | [$\frac{14}{13}$,+∞) | B. | [$\frac{13}{12}$,+∞) | C. | [$\frac{15}{13}$,2) | D. | [$\frac{5}{4}$,2) |
分析 設(shè)出雙曲線的右焦點和漸近線方程,令x=c,聯(lián)立方程求出A,B,C,D的坐標(biāo),結(jié)合距離關(guān)系和條件,運用離心率公式和a,b,c的關(guān)系,進(jìn)行求解即可.
解答 解:設(shè)雙曲線$\frac{{x}^{2}}{{a}^{2}}-\frac{{y}^{2}}{^{2}}$=1(a>0,b>0)的右焦點為(c,0),
當(dāng)x=c時代入雙曲線$\frac{{x}^{2}}{{a}^{2}}-\frac{{y}^{2}}{^{2}}$=1(a>0,b>0)得y=±$\frac{^{2}}{a}$,
則A(c,$\frac{^{2}}{a}$),B(c,-$\frac{^{2}}{a}$),
則|AB|=$\frac{2^{2}}{a}$,
將x=c代入y=±$\frac{a}$x得y=±$\frac{bc}{a}$,則C(c,$\frac{bc}{a}$),D(c,-$\frac{bc}{a}$),
則|CD|=$\frac{2bc}{a}$,
∵|AB|≥$\frac{5}{13}$|CD|,
∴$\frac{2^{2}}{a}$≥$\frac{5}{13}$•$\frac{2bc}{a}$,即b≥$\frac{5}{13}$c,
則b2=c2-a2≥$\frac{25}{169}$c2,
則e≥$\frac{13}{12}$.
故選B.
點評 本題主要考查雙曲線離心率的計算,根據(jù)方程求出交點坐標(biāo),結(jié)合距離公式進(jìn)行求解是解決本題的關(guān)鍵,屬于中檔題.
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
| A. | 0.4 | B. | 0.5 | C. | 0.6 | D. | 0.8 |
查看答案和解析>>
國際學(xué)校優(yōu)選 - 練習(xí)冊列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com