已知函數(shù)
.
⑴求函數(shù)
的單調(diào)區(qū)間;
⑵如果對(duì)于任意的
,
總成立,求實(shí)數(shù)
的取值范圍.
⑴單調(diào)遞增區(qū)間為![]()
,單調(diào)遞減區(qū)間![]()
⑵實(shí)數(shù)
的取值范圍是![]()
解析試題分析:⑴求出函數(shù)的導(dǎo)數(shù)令其大于零得增區(qū)間,令其小于零得減函數(shù);⑵令
,要使
總成立,只需
時(shí)
,對(duì)
討論,利用導(dǎo)數(shù)求
的最小值.
試題解析:(1) 由于
,所以
. (2分)
當(dāng)
,即
時(shí),
;
當(dāng)
,即
時(shí),
.
所以
的單調(diào)遞增區(qū)間為![]()
,
單調(diào)遞減區(qū)間為![]()
. (6分)
(2) 令
,要使
總成立,只需
時(shí)
.
對(duì)
求導(dǎo)得
,
令
,則
,(
)
所以
在
上為增函數(shù),所以
. (8分)
對(duì)
分類討論:
① 當(dāng)
時(shí),
恒成立,所以
在
上為增函數(shù),所以
,即
恒成立;
② 當(dāng)
時(shí),
在上有實(shí)根
,因?yàn)?img src="http://thumb.zyjl.cn/pic5/tikupic/ee/2/uypsm4.png" style="vertical-align:middle;" />在
上為增函數(shù),所以當(dāng)
時(shí),
,所以
,不符合題意;
③ 當(dāng)
時(shí),
恒成立,所以
在
上為減函數(shù),則
,不符合題意.
綜合①②③可得,所求的實(shí)數(shù)
的取值范圍是
. (12分)
考點(diǎn):利用導(dǎo)數(shù)求函數(shù)單調(diào)區(qū)間、利用導(dǎo)數(shù)求函數(shù)最值、構(gòu)造函數(shù).
| 年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
| 高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
| 高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
| 高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
設(shè)函數(shù)
.
(1)研究函數(shù)
的極值點(diǎn);
(2)當(dāng)
時(shí),若對(duì)任意的
,恒有
,求
的取值范圍;
(3)證明:
.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
已知函數(shù)
。
(1)求函數(shù)
在![]()
上的最小值;
(2)對(duì)一切
,
恒成立,求實(shí)數(shù)
的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
已知函數(shù)
.
(1)若函數(shù)
與
的圖象在公共點(diǎn)P處有相同的切線,求實(shí)數(shù)
的值及點(diǎn)P的坐標(biāo);
(2)若函數(shù)
與
的圖象有兩個(gè)不同的交點(diǎn)M、N,求實(shí)數(shù)
的取值范圍 .
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
已知函數(shù)![]()
(Ⅰ)判斷函數(shù)
在
上的單調(diào)性,并用定義加以證明;
(Ⅱ)若對(duì)任意
,總存在
,使得
成立,求實(shí)數(shù)
的取值范圍
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
已知函數(shù)
在
處的切線與
軸平行.
(1)求
的值和函數(shù)
的單調(diào)區(qū)間;
(2)若函數(shù)
的圖象與拋物線
恰有三個(gè)不同交點(diǎn),求
的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
已知函數(shù)
,
為自然對(duì)數(shù)的底,
(1)求
的最值;
(2)若關(guān)于
方程
有兩個(gè)不同解,求
的范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
已知函數(shù)
.
(Ⅰ)若曲線
在
和
處的切線互相平行,求
的值;
(Ⅱ)求
的單調(diào)區(qū)間;
(Ⅲ)設(shè)
,若對(duì)任意
,均存在
,使得
<
,求
的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
已知函數(shù)
。(
為常數(shù),
)
(Ⅰ)若
是函數(shù)
的一個(gè)極值點(diǎn),求
的值;
(Ⅱ)求證:當(dāng)
時(shí),
在
上是增函數(shù);
(Ⅲ)若對(duì)任意的
,總存在
,使不等式
成立,求實(shí)數(shù)
的取值范圍。
查看答案和解析>>
國(guó)際學(xué)校優(yōu)選 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com