分析 先轉(zhuǎn)換命題,只需證sin(α+2β)-2cos(α+β)•sinβ=sinα,再利用角的關(guān)系:2α+β=(α+β)+α,(α+β)-β=α可證得結(jié)論.
解答 證明:∵sin(α+2β)-2cos(α+β)sinβ
=sin[(α+β)+β]-2cos(α+β)sinβ
=sin(α+β)cosβ+cos(α+β)sinβ-2cos(α+β)sinβ
=sin(α+β)cosβ-cos(α+β)sinβ
=sin[(α+β)-β]
=sinα.
兩邊同除以sinβ得 $\frac{sin(α+2β)}{sinβ}$-2cos(α+β)=$\frac{sinα}{sinβ}$.
∴原式得證.
點(diǎn)評(píng) 證明三角恒等式,可先從兩邊的角入手變化,將表達(dá)式中出現(xiàn)了較多的相異的角朝著我們選定的目標(biāo)轉(zhuǎn)化,然后分析兩邊的函數(shù)名稱變名,將表達(dá)式中較多的函數(shù)種類盡量減少,這是三角恒等變形的兩個(gè)基本策略.
| 年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
| 高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
| 高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
| 高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
| A. | 充分必要條件 | B. | 充分不必要條件 | ||
| C. | 必要不充分條件 | D. | 既不充分也不必要條件 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
| A. | 3x+y-6=0 | B. | 3x-y=0 | C. | x+3y-10=0 | D. | x-3y+8=0 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
國(guó)際學(xué)校優(yōu)選 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com