分析 求導(dǎo)數(shù)得到f′(x)=x2+2(a-1)x+2,從而根據(jù)題意得到f′(x)≤0在x∈(-∞,-3)上恒成立,進(jìn)而得到$a≤-\frac{x}{2}-\frac{1}{x}+1$在x∈(-∞,-3)上恒成立,可設(shè)g(x)=$-\frac{x}{2}-\frac{1}{x}+1$,x∈(-∞,-3),容易判斷g′(x)<0,從而得出g(x)>g(-3)=$\frac{17}{6}$,這樣便可得出a的取值范圍.
解答 解:f′(x)=x2+2(a-1)x+2;
f(x)在區(qū)間(-∞,-3)內(nèi)是增函數(shù);
∴x<-3時(shí),x2+2(a-1)x+2≥0恒成立;
∴$a≤-\frac{x}{2}-\frac{1}{x}+1$在x∈(-∞,-3)上恒成立;
設(shè)g(x)=$-\frac{x}{2}-\frac{1}{x}+1$,x∈(-∞,-3),$g′(x)=\frac{2-{x}^{2}}{2{x}^{2}}$;
∵x<-3;
∴g′(x)<0;
∴g(x)在(-∞,-3)上單調(diào)遞減;
∴$g(x)>g(-3)=\frac{17}{6}$;
∴$a≤\frac{17}{6}$;
∴a的取值范圍為(-∞,$\frac{17}{6}$].
故答案為:$(-∞,\frac{17}{6}]$.
點(diǎn)評(píng) 考查函數(shù)單調(diào)性和函數(shù)導(dǎo)數(shù)符號(hào)的關(guān)系,根據(jù)函數(shù)單調(diào)性求函數(shù)值域的方法,注意正確求導(dǎo),要熟悉二次函數(shù)的圖象.
| 年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
| 高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
| 高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
| 高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:選擇題
| A. | f(0)>g(0)>g(-2) | B. | f(0)>g(-2)>g(0) | C. | g(-2)>f(0)>g(0) | D. | g(-2)>g(0)>f(0) |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
| A. | $\root{3}{{a}^{2}}$=a${\;}^{\frac{3}{2}}$ | B. | logaa2=2 | C. | a${\;}^{-\frac{3}{5}}$=$\frac{1}{\root{5}{{a}^{3}}}$ | D. | ax-y=$\frac{1}{{a}^{y-x}}$ |
查看答案和解析>>
國(guó)際學(xué)校優(yōu)選 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com