欧美日韩黄网欧美日韩日B片|二区无码视频网站|欧美AAAA小视频|久久99爱视频播放|日本久久成人免费视频|性交黄色毛片特黄色性交毛片|91久久伊人日韩插穴|国产三级A片电影网站|亚州无码成人激情视频|国产又黄又粗又猛又爽的

8.若(x2-$\frac{1}{{x}^{3}}$)n的展開式中存在常數(shù)項,則n可以為( 。
A.8B.9C.10D.11

分析 先求出${({{x^2}-\frac{1}{x^3}})^n}$的展開式的通項公式,分析可得,若${({{x^2}-\frac{1}{x^3}})^n}$的展開式中存在常數(shù)項,則n必為5的倍數(shù),從而得出結論.

解答 解:${({{x^2}-\frac{1}{x^3}})^n}$的展開式通項為${T_{r+1}}=C_n^r{({x^2})^{n-r}}{(-{x^{-3}})^r}=C_n^r{(-1)^r}{x^{2n}}^{-5r}$,
若存在常數(shù)項,則2n-5r=0有整數(shù)解,故2n=5r,n必為5的倍數(shù),
故選:C.

點評 本題主要考查二項式定理的應用,二項展開式的通項公式,屬于基礎題.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:解答題

18.某商場為推銷當?shù)氐哪撤N特產(chǎn)進行了一次促銷活動,將派出的促銷員分成甲、乙兩個小組分別在兩個不同的場地進行促銷,每個小組各6人.以下莖葉圖記錄了這兩個小組成員促銷特產(chǎn)的件數(shù),且圖中甲組的一個數(shù)據(jù)已損壞,用x表示,已知甲組促銷特產(chǎn)件數(shù)的平均數(shù)比乙組促銷特產(chǎn)件數(shù)的平均數(shù)少1件.
(Ⅰ)求x的值,并求甲組數(shù)據(jù)的中位數(shù);
(Ⅱ)在甲組中任選2位促銷員,求他們促銷的特產(chǎn)件數(shù)都多于乙組促銷件數(shù)的平均數(shù)的概率.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

19.在平面直角坐標系xOy中,已知拋物線C的頂點在坐標原點,焦點在x軸上,若曲線C經(jīng)過點P(1,3),則其焦點到準線的距離為$\frac{9}{2}$.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

16.包括甲、乙、丙三人在內(nèi)的4個人任意站成一排,則甲與乙、丙都相鄰的概率為$\frac{1}{6}$.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

3.為了解某校學生的視力情況,現(xiàn)采用隨機抽樣的方式從該校的A,B兩班中各抽5名學生進行視力檢測,檢測的數(shù)據(jù)如下:
A班5名學生的視力檢測結果:4.3,5.1,4.6,4.1,4.9.
B班5名學生的視力檢測結果:5.1,4.9,4.0,4.0,4.5.
(1)分別計算兩組數(shù)據(jù)的平均數(shù),從計算結果看,哪個班的學生視力較好?并計算A班5名學生視力的方差;
(2)現(xiàn)從B班的上述5名學生中隨機選取2名,求這2名學生中至少有1名學生的視力低于4.5的概率.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

13.設F1、F2為雙曲線$\frac{x^2}{16}-\frac{y^2}{9}=1$的兩個焦點,點P在雙曲線上,且滿足∠F1PF2=60°,則△F1PF2的面積為9$\sqrt{3}$.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

20.已知曲線C的極坐標方程是ρ=2cosθ,以極點為平面直角坐標系的原點,極軸為x軸的正半軸,建立平面直角坐標系,直線l的參數(shù)方程是$\left\{\begin{array}{l}{x=\frac{\sqrt{3}}{2}t+m}\\{y=\frac{1}{2}t}\end{array}\right.$(t為參數(shù))
(1)求曲線C的直角坐標方程和直線l的普通方程;
(2)當m=2時,直線l與曲線C交于A、B兩點,求|AB|的值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

17.已知拋物線x2=8y的焦點為F,在拋物線內(nèi)有一點A(4,4),若該拋物線上存在一動點P,則|PA|+|PF|的最小值為( 。
A.$4\sqrt{2}+2$B.4C.$2\sqrt{5}$D.6

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

18.實數(shù)x,y滿足$\left\{\begin{array}{l}{2x+4y-3π≥0}\\{2y≤π}\\{x≤π}\end{array}\right.$,則sin(x+y)的取值范圍是[-1,0].

查看答案和解析>>

同步練習冊答案