欧美日韩黄网欧美日韩日B片|二区无码视频网站|欧美AAAA小视频|久久99爱视频播放|日本久久成人免费视频|性交黄色毛片特黄色性交毛片|91久久伊人日韩插穴|国产三级A片电影网站|亚州无码成人激情视频|国产又黄又粗又猛又爽的

1.已知函數(shù)f(x)及其導(dǎo)數(shù)′(x),若存在x0,使得f(x)=f′(x),則稱x0是f(x)的一個“巧值點”,下列函數(shù)中,有“巧值點”的是( 。
①f(x)=x2,
②f(x)=e-x
③f(x)=lnx,
④f(x)=tanx,
⑤f(x)=x+$\frac{1}{x}$.
A.①③⑤B.①③④C.①②③④D.①②⑤

分析 分別求函數(shù)的導(dǎo)數(shù),根據(jù)條件f(x0)=f′(x0),確實是否有解即可.

解答 解:①中的函數(shù)f(x)=x2,f'(x)=2x.要使f(x)=f′(x),則x2=2x,解得x=0或2,可見函數(shù)有巧值點;
對于②中的函數(shù),要使f(x)=f′(x),則e-x=-e-x,由對任意的x,有e-x>0,可知方程無解,原函數(shù)沒有巧值點;
對于③中的函數(shù),要使f(x)=f′(x),則lnx=$\frac{1}{x}$,由函數(shù)f(x)=lnx與y=$\frac{1}{x}$的圖象它們有交點,因此方程有解,原函數(shù)有巧值點;
對于④中的函數(shù),要使f(x)=f′(x),則$tanx=\frac{1}{co{s}^{2}x}$,即sinxcosx=1,顯然無解,原函數(shù)沒有巧值點;
對于⑤中的函數(shù),要使f(x)=f′(x),則$x+\frac{1}{x}=1-\frac{1}{{x}^{2}}$,即x3-x2+x+1=0,設(shè)函數(shù)g(x)=x3-x2+x+1,g'(x)=3x2-2x+1>0且g(-1)<0,g(0)>0,
顯然函數(shù)g(x)在(-1,0)上有零點,原函數(shù)有巧值點.
故有巧值點”是:①③⑤.
故選:A

點評 本題主要考查導(dǎo)數(shù)的應(yīng)用,以及函數(shù)的方程的判斷,考查學(xué)生的運算能力.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

3.已知數(shù)列{an}的前4項分別是4,8,16,32,則此數(shù)列的通項公式是(  )
A.an=4nB.an=2n-1C.an=2nD.an=2n+1

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

12.已知tanα=2,那么tan(α-$\frac{π}{3}$)=$\frac{5\sqrt{3}-8}{11}$,sin2α=$\frac{4}{5}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

9.已知△ABC的三個頂點A(m,n),B(2,1),C(-2,3).
(Ⅰ)求BC邊所在直線方程;
(Ⅱ)BC邊上中線AD的方程為2x-3y+6=0,且S△ABC=7,求m,n的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

16.函數(shù)y=$\sqrt{{{log}_5}(3-x)}$的定義域是(-∞,2].

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

6.設(shè)a=log52,b=e${\;}^{-\frac{1}{2}}$,c=log3π,則( 。
A.a<c<bB.b<c<aC.a<b<cD.b<a<c

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

13.已知θ為第二象限角,sinθ=$\frac{\sqrt{3}}{2}$,則tanθ等于( 。
A.$\frac{\sqrt{3}}{3}$B.-$\frac{\sqrt{3}}{3}$C.±$\frac{\sqrt{3}}{3}$D.-$\sqrt{3}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

10.已知向量$\overrightarrow{a}$=(x+z,3),$\overrightarrow$=(2,y-z),且$\overrightarrow{a}$⊥$\overrightarrow$.若x,y滿足不等式$\left\{\begin{array}{l}{x≥0}\\{y≥0}\\{x+y≤2}\end{array}\right.$,則z的取值范圍為( 。
A.[-6,4]B.[-4,6]C.[0,4]D.[0,6]

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

11.已知i為虛數(shù)單位,復(fù)數(shù)z=$\frac{i}{1+\sqrt{3}?i}$,則復(fù)數(shù)$\overline{z}$=( 。
A.$\frac{\sqrt{3}}{4}$-$\frac{1}{4}$iB.$\frac{\sqrt{3}}{4}$+$\frac{1}{4}$iC.$\frac{\sqrt{3}}{2}$+$\frac{1}{2}$iD.$\frac{\sqrt{3}}{2}$-$\frac{1}{2}$i

查看答案和解析>>

同步練習(xí)冊答案