欧美日韩黄网欧美日韩日B片|二区无码视频网站|欧美AAAA小视频|久久99爱视频播放|日本久久成人免费视频|性交黄色毛片特黄色性交毛片|91久久伊人日韩插穴|国产三级A片电影网站|亚州无码成人激情视频|国产又黄又粗又猛又爽的

20.設(shè)$\frac{3}{2}$≤x≤2,求證:2$\sqrt{x+1}$+$\sqrt{2x-3}$+$\sqrt{6-3x}$<8.

分析 由柯西不等式可得,(2$\sqrt{x+1}$+$\sqrt{2x-3}$+$\sqrt{6-3x}$)2≤(22+12+12)(x+1+2x-3+6-3x),化簡整理即可得證.

解答 證明:由柯西不等式可得,
(2$\sqrt{x+1}$+$\sqrt{2x-3}$+$\sqrt{6-3x}$)2≤(22+12+12)(x+1+2x-3+6-3x)
=6×4,
即有2$\sqrt{x+1}$+$\sqrt{2x-3}$+$\sqrt{6-3x}$≤2$\sqrt{6}$<8.
則$\frac{3}{2}$≤x≤2時,不等式2$\sqrt{x+1}$+$\sqrt{2x-3}$+$\sqrt{6-3x}$<8.

點(diǎn)評 本題考查不等式的證明,主要考查柯西不等式的運(yùn)用,屬于中檔題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

10.若橢圓C的方程為$\frac{x^2}{a^2}+\frac{y^2}{b^2}$=1(a>b>0),F(xiàn)1、F2是它的左、右焦點(diǎn),橢圓C過點(diǎn)(0,1),且離心率為e=$\frac{{2\sqrt{2}}}{3}$.
(1)求橢圓的方程;
(2)設(shè)橢圓的左右頂點(diǎn)為A、B,直線l的方程為x=4,P是橢圓上任一點(diǎn),直線PA、PB分別交直線l于G、H兩點(diǎn),求$\overrightarrow{G{F_1}}•\overrightarrow{H{F_2}}$的值;
(3)過點(diǎn)Q(1,0)任意作直線m(與x軸不垂直)與橢圓C交于M、N兩點(diǎn),與y軸交于R點(diǎn)$\overrightarrow{RM}=λ\overrightarrow{MQ}$,$\overrightarrow{RN}=μ\overrightarrow{NQ}$.證明:λ+μ為定值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

11.已知正△ABC三個頂點(diǎn)都在半徑為2的球面上,球心O到平面ABC的距離為1,點(diǎn)E是線段AB的中點(diǎn),過點(diǎn)E作球O的截面,則截面面積的最小值是$\frac{9π}{4}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

8.用“五點(diǎn)法”作出函數(shù)y=1-cosx在[0,2π]上的圖象.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

15.如圖,已知$\overrightarrow{OA}$=3$\overrightarrow{{e}_{1}}$,$\overrightarrow{OB}$=3$\overrightarrow{{e}_{2}}$.
(1)若C、D是AB的三等分點(diǎn),求$\overrightarrow{OC}$,$\overrightarrow{OD}$;
(2)若C、D、E是AB的四等分點(diǎn),求$\overrightarrow{OC}$,$\overrightarrow{OD}$,$\overrightarrow{OE}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

5.已知雙曲線$\frac{{x}^{2}}{2}$-$\frac{{y}^{2}}{^{2}}$=1(b>0)的左右焦點(diǎn)分別為F1,F(xiàn)2,點(diǎn)P($\sqrt{3}$,y0)在該雙曲線上,若$\overrightarrow{P{F}_{1}}$•$\overrightarrow{P{F}_{2}}$=0,則雙曲線的漸近線方程為( 。
A.y=±xB.$y=±\sqrt{2}x$C.$y=±\sqrt{3}x$D.y=±2x

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

12.已知數(shù)列{an}的前n項和為Sn,且a1=4,Sn=nan+2-$\frac{n(n-1)}{2}$(n≥2,n∈N*
(1)求數(shù)列{an}的通項公式;
(2)設(shè)數(shù)列{bn}滿足:b1=4且bn+1=bn2-(n-1)bn-2(n∈N*),求證:bn>an(n≥2,n∈N*);
(3)求證:(1+$\frac{1}{{{b_2}{b_3}}}$)(1+$\frac{1}{{{b_3}{b_4}}}$)…(1+$\frac{1}{{{b_n}{b_{n+1}}}}$)<$\root{3}{e}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

9.已知|$\overrightarrow{OA}$|=3,|$\overrightarrow{OB}$|=4,且∠AOB=90°,又$\overrightarrow{OP}$=(1-t)$\overrightarrow{OA}$+t$\overrightarrow{OB}$且OP⊥AB,則t=$\frac{9}{25}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

10.已知數(shù)列{an}滿足a1=2,an+1=$\frac{n}{n+2}$an(n∈N*),求:
(1)數(shù)列{an}的通項公式;
(2)數(shù)列{$\frac{{a}_{n}}{4}$}的前2012項和S2012

查看答案和解析>>

同步練習(xí)冊答案