分析 (1)根據(jù)對數(shù)函數(shù)的定義得到不等式組解出即可;(2)先求出函數(shù)f(x)的導(dǎo)數(shù),解關(guān)于導(dǎo)函數(shù)的不等式,從而求出函數(shù)的單調(diào)區(qū)間.
解答 解:(1)由題意得:
$\left\{\begin{array}{l}{x>0}\\{{2x}^{2}-2(a+1)x+a(a+1)>0}\end{array}\right.$,
即$\left\{\begin{array}{l}{x>0}\\{{2(x-\frac{a+1}{2})}^{2}+\frac{{(a-1)}^{2}}{2}>0}\end{array}\right.$,
∴x>0,
∴函數(shù)f(x)的定義域D為:(0,+∞);
(2)f′(x)=$\frac{1}{x}$-$\frac{4x-2(a+1)}{2[{2x}^{2}-2(a+1)x+a(a+1)]}$
=$\frac{(a+1)(-x+a)}{x[{2x}^{2}-2(a+1)x+a(a+1)]}$,(0<a<2),
令f′(x)>0,解得:x<a,令f′(x)<0,解得:x>a,
∴f(x)在(0,a)遞增,在(a,+∞)遞減.
點評 本題考查了函數(shù)的單調(diào)性問題,考查導(dǎo)數(shù)的應(yīng)用,對數(shù)函數(shù)的定義,是一道中檔題.
| 年級 | 高中課程 | 年級 | 初中課程 |
| 高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
| 高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
| 高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:選擇題
| A. | 1 | B. | -1 | C. | 3 | D. | 2 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
| A. | B. | C. | D. |
查看答案和解析>>
國際學(xué)校優(yōu)選 - 練習(xí)冊列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com