分析 (Ⅰ)利用an+1=an2+an,直接代入計(jì)算即可;
(Ⅱ)通過對${a_{n+1}}=a_n^2+{a_n}$兩邊同時取倒數(shù),整理即得結(jié)論;
(Ⅲ)通過(Ⅱ)及${b_n}=\frac{1}{{1+{a_n}}}$,并項(xiàng)相加可知Tn=$\frac{1}{{a}_{1}}$-$\frac{1}{{a}_{n+1}}$,進(jìn)而T2015=2-$\frac{1}{{a}_{2016}}$,利用an+1-an=${{a}_{n}}^{2}$可知數(shù)列{an}是遞增數(shù)列,利用a2016>a4>2、計(jì)算即得結(jié)論.
解答 (Ⅰ)解:a2=${{a}_{1}}^{2}+{a}_{1}$=$\frac{1}{{2}^{2}}+\frac{1}{2}$=$\frac{3}{4}$,
a3=${{a}_{2}}^{2}+{a}_{2}$=$\frac{9}{16}+\frac{3}{4}$=$\frac{21}{16}$;
(Ⅱ)證明:∵${a_{n+1}}=a_n^2+{a_n}$,
∴$\frac{1}{{a}_{n+1}}$=$\frac{1}{{a}_{n}({a}_{n}+1)}$=$\frac{1}{{a}_{n}}$-$\frac{1}{{1+a}_{n}}$,
∴$\frac{1}{{1+{a_n}}}=\frac{1}{a_n}-\frac{1}{{{a_{n+1}}}}$;
(Ⅲ)解:由(Ⅱ)及${b_n}=\frac{1}{{1+{a_n}}}$可知:
Tn=$\frac{1}{{a}_{1}}$-$\frac{1}{{a}_{2}}$+$\frac{1}{{a}_{2}}$-$\frac{1}{{a}_{3}}$+…+$\frac{1}{{a}_{n}}$-$\frac{1}{{a}_{n+1}}$
=$\frac{1}{{a}_{1}}$-$\frac{1}{{a}_{n+1}}$,
又∵a1=$\frac{1}{2}$,
∴T2015=2-$\frac{1}{{a}_{2016}}$,
又∵${a_{n+1}}=a_n^2+{a_n}$,
∴an+1-an=${{a}_{n}}^{2}$≥0,
∴數(shù)列{an}是遞增數(shù)列,
∵a4=$\frac{21}{16}$($\frac{21}{16}$+1)>2,
∴a2016>a4>2,
∴0<$\frac{1}{{a}_{2016}}$<$\frac{1}{2}$,
∴$\frac{3}{2}$<2-$\frac{1}{{a}_{2016}}$<2,
∴[T2015]=1.
點(diǎn)評 本題是一道關(guān)于數(shù)列求和的綜合題,考查運(yùn)算求解能力,注意解題方法的積累,屬于中檔題.
| 年級 | 高中課程 | 年級 | 初中課程 |
| 高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
| 高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
| 高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
| A. | 4 | B. | 6 | C. | 8 | D. | 10 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
| A. | 5 | B. | 10 | C. | $2\sqrt{6}$ | D. | $4\sqrt{6}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
| 積極支持企業(yè)改革 | 不太贊成企業(yè)改革 | 總計(jì) | |
| 工作積極 | 50 | 40 | 90 |
| 工作不積極 | 30 | 60 | 90 |
| 總計(jì) | 80 | 100 | 180 |
| P(k2≥k0) | 0.50 | 0.05 | 0.005 |
| k0 | 0.455 | 3.841 | 10.828 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
| A. | 大前提錯誤 | B. | 小前提錯誤 | C. | 推理形式錯誤 | D. | 結(jié)論錯誤 |
查看答案和解析>>
國際學(xué)校優(yōu)選 - 練習(xí)冊列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com