欧美日韩黄网欧美日韩日B片|二区无码视频网站|欧美AAAA小视频|久久99爱视频播放|日本久久成人免费视频|性交黄色毛片特黄色性交毛片|91久久伊人日韩插穴|国产三级A片电影网站|亚州无码成人激情视频|国产又黄又粗又猛又爽的

6.已知向量$\overrightarrow{m}$=(x-1,1),$\overrightarrow{n}$=(1,y),若$\overrightarrow{m}⊥\overrightarrow{n}$,則2x+2y的最小值為(  )
A.2B.4C.2$\sqrt{2}$D.4$\sqrt{2}$

分析 運(yùn)用向量垂直的條件:數(shù)量積為0,可得x+y=1,再由基本不等式和指數(shù)函數(shù)的性質(zhì),即可得到最小值.

解答 解:由向量$\overrightarrow{m}$=(x-1,1),$\overrightarrow{n}$=(1,y),若$\overrightarrow{m}⊥\overrightarrow{n}$,
則$\overrightarrow{m}$•$\overrightarrow{n}$=0,即有x-1+y=0,
即x+y=1,
又2x+2y≥2$\sqrt{{2}^{x}•{2}^{y}}$=2$\sqrt{{2}^{x+y}}$=2$\sqrt{2}$,
當(dāng)且僅當(dāng)2x=2y即x=y=$\frac{1}{2}$,取得等號.
則有2x+2y的最小值為2$\sqrt{2}$.
故選:C.

點(diǎn)評 本題考查向量垂直的條件:數(shù)量積為0,主要考查基本不等式的運(yùn)用:求最值,同時考查指數(shù)函數(shù)的性質(zhì),屬于中檔題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

16.已知橢圓$\frac{x^2}{9}+\frac{y^2}{b^2}=1$(0<b<3),左、右焦點(diǎn)分別為F1、F2,過F1的直線交橢圓于 A,B兩點(diǎn),若|AF2|+|BF2|的最大值為8,則橢圓的離心率是( 。
A.$\frac{1}{3}$B.$\frac{{\sqrt{2}}}{3}$C.$\frac{{\sqrt{6}}}{3}$D.$\frac{{\sqrt{3}}}{3}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

17.橢圓M:$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{^{2}}$=1(a>b>0)的左、右焦點(diǎn)分別為F1,F(xiàn)2,過F1的直線交橢圓于A,B兩點(diǎn),且△ABF2的周長為8$\sqrt{2}$,圓N:x2+(y-1)2=1在橢圓M內(nèi)部,且與其相切.
(1)求橢圓M的方程;
(2)設(shè)P是橢圓M上的任意一點(diǎn),EF為圓N的任意一條直徑(E、F為直徑的兩個端點(diǎn)),求$\overrightarrow{PE}$•$\overrightarrow{PF}$的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

14.如圖,已知橢圓$\frac{x^2}{a^2}+\frac{y^2}{b^2}=1({a>b>0})$的離心率為$\frac{{\sqrt{2}}}{2}$,F(xiàn)1、F2為其左、右焦點(diǎn),過F1的直線l交橢圓于A、B兩點(diǎn),△F1AF2的周長為$2(\sqrt{2}+1)$.
(1)求橢圓的標(biāo)準(zhǔn)方程;
(2)求△AOB面積的最大值(O為坐標(biāo)原點(diǎn)).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

1.在平面直角坐標(biāo)系xOy中,直線2x-y-4=0與直線y=x-1的交點(diǎn)為M,過點(diǎn)A(0,3)作直線l,使得點(diǎn)M到直線l的距離為1.求直線l的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

11.河南省2013級高中學(xué)業(yè)水平考試在2015年1月16日至18日共考試三天,需考語文、數(shù)學(xué)、英語、物理、化學(xué)、生物、政治、歷史、地理九門學(xué)科,若語文、數(shù)學(xué)、英語必須安排在下午,每天上午安排其余的六門學(xué)科,且每天上午考兩門,下午考一門,問有多少種安排考試順序的方法( 。
A.540B.720C.3240D.4320

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

18.記max{a,b}=$\left\{\begin{array}{l}{a,a≥b}\\{b,a<b}\end{array}\right.$,f(x)=max{|x-m|,|x+1|},若存在實(shí)數(shù)x,使得f(x)≤1成立,則實(shí)數(shù)m的取值范圍是[-3,1].

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

15.已知圓C:x2+y2-2x-2y+1=0,其半徑r=1,圓心C到直線x-y=2的距離為$\sqrt{2}$,圓C上的點(diǎn)到直線x-y=2的最小值為$\sqrt{2}$-1.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

16.若a,b∈R,那么“a<b<0”是“$\frac{1}{a}>\frac{1}$”成立的( 。
A.充要條件B.充分不必要條件
C.必要不充分條件D.既不充分也不必要條件

查看答案和解析>>

同步練習(xí)冊答案