分析 (1)原不等式可化為tanx≥-1,由正切函數(shù)的圖象和性質(zhì)可得;
(2)原不等式可化為tanx≥$\sqrt{3}$,由正切函數(shù)的圖象和性質(zhì)可得.
解答
解:
(1)由1+tanx≥0可得tanx≥-1,
∴由正切函數(shù)的性質(zhì)可得kπ-$\frac{π}{4}$≤x<kπ+$\frac{π}{2}$,
∴使不等式成立的x的集合為{x|kπ-$\frac{π}{4}$≤x<kπ+$\frac{π}{2}$,k∈Z};
(2)由tanx-$\sqrt{3}$≥0可得tanx≥$\sqrt{3}$,
∴由正切函數(shù)的性質(zhì)可得kπ+$\frac{π}{3}$≤x<kπ+$\frac{π}{2}$,
∴使不等式成立的x的集合為{x|kπ+$\frac{π}{3}$≤x<kπ+$\frac{π}{2}$,k∈Z}.
點(diǎn)評(píng) 本題考查正切函數(shù)的圖象和性質(zhì),屬基礎(chǔ)題.
| 年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
| 高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
| 高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
| 高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:選擇題
| A. | 至少有一個(gè)紅球,至少有一個(gè)白球 | B. | 恰有一個(gè)紅球,都是白球 | ||
| C. | 至少有一個(gè)紅球,都是白球 | D. | 至多有一個(gè)紅球,都是紅球 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
| A. | 5π+4 | B. | 14π+4 | C. | 5π+12 | D. | 14π+12 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
國(guó)際學(xué)校優(yōu)選 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com