欧美日韩黄网欧美日韩日B片|二区无码视频网站|欧美AAAA小视频|久久99爱视频播放|日本久久成人免费视频|性交黄色毛片特黄色性交毛片|91久久伊人日韩插穴|国产三级A片电影网站|亚州无码成人激情视频|国产又黄又粗又猛又爽的

6.已知a∈R,函數(shù)f(x)=-$\frac{3}{2}$x2+(4a+2)x-a(a+2)lnx在(0,1)內(nèi)有極值,則a的取值范圍是(  )
A.(0,1)B.(-2,0)∪(0,1)C.(-2,-$\frac{1}{2}$)∪(-$\frac{1}{2}$,1)D.(-2,1)

分析 求出函數(shù)的導(dǎo)數(shù),令g(x)=-3x2+(4a+2)x-a(a+2),由題意可得,g(x)=0在(0,1)內(nèi)有解.若g(x)=0只有一解,若g(x)=0有兩解,運用零點存在定理和二次函數(shù)的圖象和性質(zhì),得到不等式組,解得它們,注意a=0的情況,再求并集即可.

解答 解:函數(shù)f(x)=-$\frac{3}{2}$x2+(4a+2)x-a(a+2)lnx的導(dǎo)數(shù)為
f′(x)=-3x+(4a+2)-$\frac{a(a+2)}{x}$=$\frac{-3{x}^{2}+(4a+2)x-a(a+2)}{x}$,
令g(x)=-3x2+(4a+2)x-a(a+2),
由題意可得,g(x)=0在(0,1)內(nèi)有解.
若g(x)=0只有一解,
則有g(shù)(0)g(1)<0,即-a(a+2)(-a2+2a-1)<0,
解得-2<a<0;
若g(x)=0有兩解,
則$\left\{\begin{array}{l}{g(0)<0}\\{g(1)<0}\\{(4a+2)^{2}-12a(a+2)>0}\\{0<\frac{2a+1}{3}<1}\end{array}\right.$即有$\left\{\begin{array}{l}{a>0或a<-2}\\{a≠1}\\{a≠1}\\{-\frac{1}{2}<a<1}\end{array}\right.$,
解得0<a<1.
當(dāng)a=0時,f(x)=-$\frac{3}{2}$x2+2x在x=$\frac{2}{3}$處取得極大值,成立.
綜上可得a的取值范圍是(-2,1).
故選D.

點評 本題考查導(dǎo)數(shù)的運用:求極值,主要考查二次方程的實根的分布,運用二次函數(shù)的圖象和性質(zhì)是解題的關(guān)鍵,考查運算能力,屬于中檔題和易錯題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

7.已知數(shù)列{an}的前n項和Sn=6n-n2,求數(shù)列{|an|}的前n項和Tn

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

17.如圖,在四棱錐P-ABCD中,平面PAB⊥平面ABCD,BC∥AD且2BC=AD,∠PBC=90°,∠PBA≠90°.
(1)求證:平面PBC⊥平面PAB;
(2)若平面PAB∩平面PCD=l,求證:直線l不平行于平面ABCD.(用反證法證明)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

14.如圖,三棱柱中,側(cè)棱AA1⊥底面A1B1C1,三角形A1B1C1是正三角形,E是BC中點,則下列敘述正確的是( 。
A.CC1與B1E是異面直線B.A1C1⊥平面ABB1A1
C.AE,B1C1為異面直線,且AE⊥B1C1D.A1C1∥平面A1EB

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

1.已知空間兩條直線a、b沒有公共點,則a和b( 。
A.一定是異面直線B.一定是平行直線
C.不可能是平行直線D.不可能是相交直線

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

11.如圖,在三棱柱ABC-A1B1C1中,AA1C1C是邊長為4的正方形.平面ABC⊥平面AA1C1C,AB=3,BC=5.
(1)求證:AA1⊥平面ABC;
(2)求三棱錐C-A1BC1的體積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

18.如圖所示,在棱長為2的正方體ABCD-A1B1C1D1中,E、F分別為DD1、DB的中點.
(Ⅰ)求證:EF∥平面ABC1D1;
(Ⅱ)求三棱錐E-FCB1的體積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

15.定義:如果函數(shù)y=f(x)在定義域內(nèi)給定區(qū)間[a,b]上存在x0(a<x0<b),滿足$f({x_0})=\frac{f(b)-f(a)}{b-a}$,則稱函數(shù)y=f(x)是[a,b]上的“平均值函數(shù)”,x0是它的一個均值點.如y=x2是[-1,1]上的平均值函數(shù),0就是它的均值點.現(xiàn)有函數(shù)f(x)=x3+mx是區(qū)間[-1,1]上的平均值函數(shù),則實數(shù)m的取值范圍是-3<m≤$-\frac{3}{4}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

16.如圖,四棱錐P-ABCD的底面ABCD是平行四邊形,側(cè)面PAD是等邊三角形,平面PAD⊥平面ABCD,M,N分別是棱PC,AB的中點,且MN⊥CD.
(Ⅰ)求證:AD⊥CD;
(Ⅱ)若AB=AD,求直線MN與平面PBD所成角的正弦值.

查看答案和解析>>

同步練習(xí)冊答案