分析 由函數(shù)奇偶性的定義判斷①;直接求出函數(shù)的值域判斷②;求出滿足A∪B=A的a的值判斷③;由偶函數(shù)的性質(zhì)結(jié)合f(2-m)<f(m)求得m的范圍判斷④;求出使函數(shù)定義域?yàn)镽的k的范圍判斷⑤.
解答 解:①函數(shù)$f(x)=x+\frac{1}{x}$的定義域?yàn)镽,且f(-x)=-x-$\frac{1}{x}=-f(x)$,函數(shù)為奇函數(shù),①正確;
②∵3-2x-x2=-(x+1)2+4≤4,∴0≤$\sqrt{3-2x-{x}^{2}}$≤2,函數(shù)$y=\sqrt{3-2x-{x^2}}$的值域?yàn)閧y|0≤y≤2},②錯(cuò)誤;
③集合A={-1,3},B={x|ax-1=0,a∈R},若A∪B=A,則B⊆A.
a=0時(shí),B=∅滿足;a≠0時(shí),B={$\frac{1}{a}$},∴$\frac{1}{a}=-1$或$\frac{1}{a}=3$,即a=-1或a=$\frac{1}{3}$.
∴a的取值集合為{0,-1,$\frac{1}{3}$},③錯(cuò)誤;
④定義在R上的偶函數(shù)f(x)在[0,+∞)上單調(diào)遞減,且f(2-m)<f(m),則|2-m|>|m|,解得m∈(-∞,1),④正確;
⑤若函數(shù)$f(x)=\frac{1}{{\sqrt{({k^2}+4k-5){x^2}-4(k-1)x+3}}}$的定義域?yàn)镽,則(k2+4k-5)x2-4(k-1)x+3>0對(duì)任意實(shí)數(shù)x恒成立.
當(dāng)k=1時(shí)成立;當(dāng)k≠1時(shí),則$\left\{\begin{array}{l}{{k}^{2}+4k-5>0}\\{16(k-1)^{2}-12({k}^{2}+4k-5)<0}\end{array}\right.$,解得k∈[1,19),⑤錯(cuò)誤.
∴正確命題的序號(hào)是①④⑤.
故答案為:①④⑤.
點(diǎn)評(píng) 本題考查命題的真假判斷與應(yīng)用,考查了函數(shù)的性質(zhì),訓(xùn)練了函數(shù)定義域的求法,屬中檔題.
| 年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
| 高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
| 高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
| 高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
| A. | $\frac{3}{2}$ | B. | 5 | C. | 2 | D. | $\frac{5}{3}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
| A. | x>$\frac{x+y}{2}$>$\sqrt{xy}$>y | B. | y>$\frac{x+y}{2}$>$\sqrt{xy}$>x | C. | x>$\frac{x+y}{2}$>y>$\sqrt{xy}$ | D. | y>$\frac{x+y}{2}$≥$\sqrt{xy}$>x |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
| A. | (-$\frac{3}{8}$,-$\frac{1}{8}$) | B. | (-$\frac{3}{8}$,$\frac{1}{8}$) | C. | ($\frac{3}{10}$,-$\frac{1}{10}$) | D. | ($\frac{3}{10}$,$\frac{1}{10}$) |
查看答案和解析>>
國(guó)際學(xué)校優(yōu)選 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com