欧美日韩黄网欧美日韩日B片|二区无码视频网站|欧美AAAA小视频|久久99爱视频播放|日本久久成人免费视频|性交黄色毛片特黄色性交毛片|91久久伊人日韩插穴|国产三级A片电影网站|亚州无码成人激情视频|国产又黄又粗又猛又爽的

12.過點(diǎn)P(4,2)且與曲線$y=\frac{x}{x-2}$在點(diǎn)Q(1,-1)處的切線垂直的直線方程為x-2y=0.

分析 求出函數(shù)的導(dǎo)函數(shù),然后把x=1代入導(dǎo)函數(shù)求出切線方程的斜率,然后根據(jù)兩直線垂直時(shí)斜率的關(guān)系求出所求直線的斜率,由已知點(diǎn)的坐標(biāo)和求出的斜率寫出所求直線的方程即可.

解答 解:由曲線$y=\frac{x}{x-2}$,得到y(tǒng)′=$\frac{-2}{(x-2)^{2}}$,
把x=1代入y′得:y′|x=1=-2,
則所求直線方程的斜率為$\frac{1}{2}$,又所求直線過P(4,2),
所求直線額方程為:y-2=$\frac{1}{2}$(x-4),即x-2y=0.
故答案為:x-2y=0.

點(diǎn)評 此題考查學(xué)生會(huì)利用導(dǎo)數(shù)求曲線上過某點(diǎn)切線方程的斜率,掌握兩直線垂直時(shí)斜率滿足的關(guān)系,是一道基礎(chǔ)題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

9.如圖莖葉圖記錄了甲、乙兩組各四名同學(xué)的植樹棵數(shù),乙組記錄中有一個(gè)數(shù)據(jù)模糊,無法確認(rèn),在圖中以x表示
附:方差S2=$\frac{1}{n}$[(x1-x)2+(x2-x)2+…+(xn-$\overline{x}$)2],其中$\overline{x}$為x1,x2,…,xn的平均數(shù)
(1)如果x=8,求乙組同學(xué)植樹棵數(shù)的平均數(shù)和方差;
(2)如果x=9,分別從甲、乙兩組中隨機(jī)選取一名同學(xué),求這兩名同學(xué)的植樹總棵數(shù)為19的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

3.有5條長度分別為1,3,5,6,7的線段,從中任意取出3條,則所取3條線段可以構(gòu)成三角形的概率為0.4.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

20.圓心角為1弧度半徑為2的扇形的面積為2.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

7.下列命題:
①“x=2”是“x2-4x+4=0”的必要不充分條件;
②“圓心到直線的距離等于半徑”是“這條直線為圓的切線”的充分必要條件;
③“sin α=sin β”是“α=β”的充要條件;
④“ab≠0”是“a≠0”的充分不必要條件.
其中為真命題的是( 。
A.①③B.②④C.②③D.①③

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

17.已知集合M={x∈N|x2-3x<4},N={x||x|<2},則M∩N=( 。
A.{x|-2≤x<1}B.{x|-2<x<1}C.{0}D.{0,1}

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

4.為了保護(hù)環(huán)境,發(fā)展低碳經(jīng)濟(jì),某單位在國家科研部門的支持下,進(jìn)行技術(shù)攻關(guān),新上了把二氧化碳處理轉(zhuǎn)化為一種可利用的化工產(chǎn)品的項(xiàng)目,經(jīng)測算,該項(xiàng)目月處理成本y(元)與月處理量x(噸)之間的函數(shù)關(guān)系可近似地表示為y=$\left\{\begin{array}{l}{\frac{1}{3}{x}^{3}-80{x}^{2}+5040x,x∈[120,144)}\\{\frac{1}{2}{x}^{2}-200x+80000,x∈[144,500]}\end{array}\right.$且每處理一噸二氧化碳得到可利用的化工產(chǎn)品價(jià)值為200元,若該項(xiàng)目不獲利,國家將給予補(bǔ)償.
(1)當(dāng)x∈[200,300]時(shí),判斷該項(xiàng)目能否獲利?如果獲利,求出最大利潤;如果不獲利,則國家每月至少需要補(bǔ)貼多少元才能使該項(xiàng)目不虧損?
(2)該項(xiàng)目每月處理量為多少噸時(shí),才能使每噸的平均處理成本最低?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

1.設(shè)單位向量$\overrightarrow{{e}_{1}}$,$\overrightarrow{{e}_{2}}$的夾角為$\frac{2π}{3}$,$\overrightarrow{a}$=$\overrightarrow{{e}_{1}}$+2$\overrightarrow{{e}_{2}}$,$\overrightarrow$=-3$\overrightarrow{{e}_{2}}$,則$\overrightarrow{a}$在$\overrightarrow$方向上的投影為( 。
A.-$\frac{3\sqrt{3}}{2}$B.-$\frac{3}{2}$C.$\frac{3}{2}$D.$\frac{3\sqrt{3}}{2}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

2.假設(shè)你家訂了一盒牛奶,送奶人可能在早上6:30---7:30之間把牛奶送到你家,你離開家去學(xué)校的時(shí)間在早上7:00-8:00之間,則你在離開家前能得到牛奶的概率是$\frac{7}{8}$.

查看答案和解析>>

同步練習(xí)冊答案