分析 由數(shù)列遞推式求得數(shù)列首項,然后構(gòu)造出等比數(shù)列{an+1},由等比數(shù)列的通項公式得答案.
解答 解:由2an-n=Sn,得2a1-1=a1,解得a1=1.
又2an-1-(n-1)=Sn-1(n≥2),
兩式作差得an=2an-1+1,即an+1=2(an-1+1)(n≥2),
∵a1+1=2,∴{an+1}是以2為首項,以2為公差的等差數(shù)列,
則${a}_{n}+1={2}^{n}$,即${a}_{n}={2}^{n}-1$.
故答案為:2n-1.
點(diǎn)評 本題考查數(shù)列遞推式,考查了等比關(guān)系的確定,考查了等比數(shù)列的通項公式,是中檔題.
| 年級 | 高中課程 | 年級 | 初中課程 |
| 高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
| 高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
| 高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
| 21 | 22 | 23 | 24 | |
| 28 | 27 | 26 | 25 | |
| 29 | 210 | 211 | 212 | |
| 216 | 215 | 214 | 213 | |
| … | … | … | … | … |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
| A. | [-1,2] | B. | [0,3] | C. | [2,5] | D. | (0,3) |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
| A. | $\frac{3\sqrt{3}}{4}$ | B. | $\frac{\sqrt{3}}{4}$ | ||
| C. | $\sqrt{3}$ | D. | 條件不足,無法計算 |
查看答案和解析>>
國際學(xué)校優(yōu)選 - 練習(xí)冊列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com