方程
+
=1表示曲線C,給出以下命題:
①曲線C不可能為圓;
②若1<t<4,則曲線C為橢圓;
③若曲線C為雙曲線,則t<1或t>4;
④若曲線C為焦點(diǎn)在x軸上的橢圓,則1<t<
.
其中真命題的序號是______(寫出所有正確命題的序號).
| 年級 | 高中課程 | 年級 | 初中課程 |
| 高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
| 高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
| 高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
設(shè)集合A={(x,y)|y=2x-1,x∈N*},B={(x,y)|y=ax2-ax+a,x∈N*},問是否存在非零整數(shù)a,使A∩B≠∅?若存在,請求出a的值;若不存在,說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
已知命題p:“∀x∈[1,2],x2-a≥0”,命題q:“∃x0∈R,x
+2ax0+2-a=0”,若命題“p且q”是真命題,求實(shí)數(shù)a的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
已知命題p:在x∈[1,2]時,不等式x2+ax-2>0恒成立;命題q:函數(shù)f(x)=log
(x2-2ax+3a)是區(qū)間[1,+∞)上的減函數(shù).若命題“p∨q”是真命題,求實(shí)數(shù)a的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
“直線l的方程為x-y=0”是“直線l平分圓x2+y2=1的周長”的( )
A.充分而不必要條件
B.必要而不充分條件
C.充要條件
D.既不充分又不必要條件
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
有下列命題:
①設(shè)集合M={x|0<x≤3},N={x|0<x≤2},則“a∈M”是“a∈N”的充分而不必要條件;
②命題“若a∈M,則b∉M”的逆否命題是:若b∈M,則a∉M;
③若p∧q是假命題,則p、q都是假命題;
④命題p:“∃x0∈R,x
-x0-1>0”的否定綈p:“∀x∈R,x2-x-1≤0”
其中真命題的序號是________.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
已知a、b為實(shí)數(shù),則“2a>2b”是“l(fā)na>lnb”的( )
A.充分而不必要條件 B.必要而不充分條件
C.充要條件 D.既不充分也不必要條件
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
某工廠生產(chǎn)某種產(chǎn)品,每日的成本C(單位:元)與日產(chǎn)量x(單位:t)滿足函數(shù)關(guān)系式C=10 000+20x,每日的銷售額R(單位:元)與日產(chǎn)量x的函數(shù)關(guān)系式為R=![]()
已知每日的利潤y=R-C,且當(dāng)x=30時,y=-100.
(1)求a的值;
(2)當(dāng)日產(chǎn)量為多少噸時,每日的利潤可以達(dá)到最大,并求出最大值.
查看答案和解析>>
國際學(xué)校優(yōu)選 - 練習(xí)冊列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com