已知橢圓的中心在坐標原點
O,焦點在坐標軸上,直線
y=
x+1與該橢圓相交于
P和
Q,且
OP⊥
OQ,|
PQ|=

.求橢圓的方程.

, 或

本小題考查橢圓的性質(zhì)、兩點的距離公式、兩條直線垂直條件、二次方程根與系數(shù)的關(guān)系及分析問題的能力.滿分12分.
解:求橢圓方程為

依題意知,點
P、
Q的坐標滿足方程組

將②式代入①式,整理得(
a2+
b2)
x2+2
a2x+
a2(1-
b2)="0, " ③ ——2分
設(shè)方程③的兩個根分別為
x1,
x2,那么直線
y=
x+1與橢圓的交點為
P(
x1,
x1+1),
Q(
x2,
x2+1). ——3分
由題設(shè)
OP⊥
OQ,|
PQ|=

,可得

整理得

——6分解這個方程組,得

或

根據(jù)根與系數(shù)的關(guān)系,由③式得
(Ⅰ)

或 (Ⅱ)

——10分
解方程組(Ⅰ),(Ⅱ),得

或

故所求橢圓的方程為

, 或

——12分
練習(xí)冊系列答案
相關(guān)習(xí)題
科目:高中數(shù)學(xué)
來源:不詳
題型:解答題

分別是橢圓

的左右焦點,

點在橢圓上,

是面積為

的正三角形,求

的值。
查看答案和解析>>
科目:高中數(shù)學(xué)
來源:不詳
題型:解答題
設(shè)

是橢圓

的兩個焦點,

是橢圓上任意一點,求

的最大值和最小值。
查看答案和解析>>
科目:高中數(shù)學(xué)
來源:不詳
題型:單選題
一個橢圓的半焦距為

,離心率

,那么它的短軸長是( )
查看答案和解析>>
科目:高中數(shù)學(xué)
來源:不詳
題型:單選題
設(shè)

,

,若直線

和橢圓

有公共點,則

的取值范圍是


、

;

、

;

、

;

、

.
查看答案和解析>>
科目:高中數(shù)學(xué)
來源:不詳
題型:單選題
橢圓有這樣的光學(xué)性質(zhì):從橢圓的一個焦點出發(fā)的光線,經(jīng)橢圓反射后,反射光線經(jīng)過橢圓的另一個焦點,今有一個水平放置的橢圓形臺球盤,點

、

是它的焦點,長軸長為

,焦距為

,靜放在點

的小球(小球的半徑不計),從點

沿直線出發(fā),經(jīng)橢圓壁反彈后第一次回到點

時,小球經(jīng)過的路程是
查看答案和解析>>
科目:高中數(shù)學(xué)
來源:不詳
題型:單選題
平面內(nèi)已知兩點A(0,2)、B(0,-2),若動點P滿足|PA|+|PB|=4,則點P的軌跡是( 。
查看答案和解析>>
科目:高中數(shù)學(xué)
來源:不詳
題型:填空題

是橢圓的左焦點,

是橢圓上一點,

軸,

,

求橢圓的離心率。
查看答案和解析>>
科目:高中數(shù)學(xué)
來源:不詳
題型:單選題
橢圓

(


)的左、右焦點分別是

,過

作傾斜角為

的直線與橢圓的一個交點為

,若

垂直于

軸,則橢圓的離心率為( )
查看答案和解析>>