欧美日韩黄网欧美日韩日B片|二区无码视频网站|欧美AAAA小视频|久久99爱视频播放|日本久久成人免费视频|性交黄色毛片特黄色性交毛片|91久久伊人日韩插穴|国产三级A片电影网站|亚州无码成人激情视频|国产又黄又粗又猛又爽的

1.設(shè)等差數(shù)列{an}滿足:$\frac{{{{sin}^2}{a_2}-{{cos}^2}{a_2}+{{cos}^2}{a_2}{{cos}^2}{a_7}-{{sin}^2}{a_2}{{sin}^2}{a_7}}}{{sin({a_4}+{a_5})}}=1$,公差$d∈(-\frac{1}{2},0)$若當(dāng)且僅當(dāng)n=11時(shí),數(shù)列{an}的前n項(xiàng)和Sn取得最大值,則首項(xiàng)a1的取值范圍是(  )
A.$(\frac{10}{11}π,π)$B.$[\frac{10}{11}π,π)$C.$[π,\frac{11}{10}π)$D.$(π,\frac{11}{10}π)$

分析 利用三角函數(shù)的倍角公式、積化和差與和差化積公式化簡(jiǎn)已知的等式,根據(jù)公差d的范圍求出公差的值,代入前n項(xiàng)和公式后利用二次函數(shù)的對(duì)稱軸的范圍求解首項(xiàng)a1取值范圍.

解答 解:由$\frac{{{{sin}^2}{a_2}-{{cos}^2}{a_2}+{{cos}^2}{a_2}{{cos}^2}{a_7}-{{sin}^2}{a_2}{{sin}^2}{a_7}}}{{sin({a_4}+{a_5})}}=1$,
得$\frac{si{n}^{2}{a}_{2}(1-si{n}^{2}{a}_{7})-co{s}^{2}{a}_{2}(1-co{s}^{2}{a}_{7})}{sin({a}_{4}+{a}_{5})}$=$\frac{si{n}^{2}{a}_{2}co{s}^{2}{a}_{7}-co{s}^{2}{a}_{2}si{n}^{2}{a}_{7}}{sin({a}_{4}+{a}_{5})}$
=$\frac{(sin{a}_{2}cos{a}_{7}-cos{a}_{2}sin{a}_{7})(sin{a}_{2}cos{a}_{7}+cos{a}_{2}sin{a}_{7})}{sin({a}_{4}+{a}_{5})}$
=$\frac{sin({a}_{2}-{a}_{7})sin({a}_{2}+{a}_{7})}{sin({a}_{4}+{a}_{5})}$=sin(a2-a7)=sin(-5d)=1
∴sin(5d)=-1.
∵d∈(-$\frac{1}{2}$,0),∴5d∈(-$\frac{5}{2}$,0),
則5d=$-\frac{π}{2}$,d=-$\frac{π}{10}$.
由Sn=na1+$\frac{n(n-1)d}{2}$=na1-$\frac{n(n-1)}{2}×\frac{π}{10}$=-$\frac{{n}^{2}}{20}$π+(a1+$\frac{π}{20}$)n.
對(duì)稱軸方程為n=$\frac{10}{π}$(a1+$\frac{π}{20}$),
由題意當(dāng)且僅當(dāng)n=11時(shí),數(shù)列{an}的前n項(xiàng)和Sn取得最大值,
∴$\frac{21}{2}$<$\frac{10}{π}$(a1+$\frac{π}{20}$)<$\frac{23}{2}$,解得:π<a1<$\frac{11π}{10}$.
∴首項(xiàng)a1的取值范圍是(π,$\frac{11π}{10}$).
故選:D.

點(diǎn)評(píng) 本題考查了等差數(shù)列的通項(xiàng)公式,考查了三角函數(shù)的有關(guān)公式,考查了等差數(shù)列的前n項(xiàng)和,訓(xùn)練了二次函數(shù)取得最值得條件,考查了計(jì)算能力.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

10.一袋中有5個(gè)白球、3個(gè)紅球,現(xiàn)從袋中往外取球,每次任取一個(gè)記下顏色后放回,直到紅球出現(xiàn)10次時(shí)停止,設(shè)停止時(shí)共取了X次球,則P(X=12)等于( 。
A.C${\;}_{12}^{10}$($\frac{3}{8}$)10($\frac{5}{8}$)2B.C${\;}_{12}^{9}$($\frac{3}{8}$)9($\frac{5}{8}$)2($\frac{3}{8}$)C.C${\;}_{11}^{9}$($\frac{5}{8}$)9($\frac{3}{8}$)2D.C${\;}_{11}^{9}$($\frac{3}{8}$)10($\frac{5}{8}$)2

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

11.在如圖所示的正方形中隨機(jī)取一點(diǎn),則此點(diǎn)落入陰影部分(曲線C是函數(shù)f(x)=$\frac{1}{\sqrt{2π}}$${\;}^{{e}^{-\frac{{x}^{2}}{2}}}$ 的圖象)的概率為( 。
注:P(μ-σ<x≤μ+σ)=0.6826,P(μ-2σ<x≤μ+2σ)=0.9544,P(μ-3σ<x≤μ+3σ)=0.9974.
A.0.2386B.0.2718C.0.3413D.0.4772

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

9.設(shè)f(x)=2x3+ax2+bx+1在(1,f(1))處的切線方程為y=-6.
(1)求實(shí)數(shù)a,b的值;
(2)求函數(shù)f(x)的極值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

16.如圖,在Rt△AOB中,∠OAB=30°,斜邊AB=4,Rt△AOC可以通過(guò)Rt△AOB以直線AO為軸旋轉(zhuǎn)得到,且二面角B-AO-C的直二面角,D是AB的中點(diǎn).
(1)求證:平面COD⊥平面AOB;
(2)求異面直線AO與CD所成角的正切值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

6.已知sin$θ=\frac{1}{3}$,θ是第二象限角,求cosθ•tanθ的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

13.求函數(shù)f(x)=$\frac{1}{3}$x3-x2-8x+1(-6≤x≤6)的單調(diào)區(qū)間、極值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

10.在平面直角坐標(biāo)系xOy中,曲線C1的參數(shù)方程為$\left\{\begin{array}{l}{x=4{t}^{2}}\\{y=4t}\end{array}\right.$(其中t為參數(shù)).以坐標(biāo)原點(diǎn)O為極點(diǎn),x軸正半軸為極軸建立極坐標(biāo)系并取相同的單位長(zhǎng)度,曲線C2的極坐標(biāo)方程為$ρcos(θ+\frac{π}{4})=\frac{\sqrt{2}}{2}$.
(Ⅰ)把曲線C1的方程化為普通方程,C2的方程化為直角坐標(biāo)方程;
(Ⅱ)若曲線C1,C2相交于A,B兩點(diǎn),AB的中點(diǎn)為P,過(guò)點(diǎn)P做曲線C2的垂線交曲線C1于E,F(xiàn)兩點(diǎn),求|PE|•|PF|.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

11.化簡(jiǎn)($\root{3}{\root{6}{{a}^{9}}}$)4•($\root{6}{\root{3}{{a}^{9}}}$)4的結(jié)果等于a4

查看答案和解析>>

同步練習(xí)冊(cè)答案