分析 本題要根據(jù)實(shí)際情況計算出定義域與函數(shù)的零點(diǎn),可以看出所給的條件是△CPD,故可根據(jù)其是三角形求出自變量的范圍.面積表達(dá)式可以用海倫公式求出,對所得的函數(shù)求導(dǎo),令導(dǎo)數(shù)為0,解出即可.
解答 解:由題意,DC=2,CP=x,DP=6-x
∵△CPD,∴$\left\{\begin{array}{l}{2+x>6-x}\\{2+6-x>x}\\{x+6-x>2}\end{array}\right.$,解得x∈(2,4)
如圖,三角形的周長是一個定值8,
故其面積可用海倫公式表示出來即f(x)=$\sqrt{4×(4-x)×(4-6+x)×2}$=$\sqrt{-{8x}^{2}+48x-64}$,
∴f′(x)=$\frac{-16x+48}{\sqrt{-{8x}^{2}+48x-64}}$,
令 f′(x)=0,解得x=3,
故答案為:(2,4),3.
點(diǎn)評 本題考查根據(jù)實(shí)際問題選擇函數(shù)類型,本題中求函數(shù)解析式用到了海倫公式,學(xué)習(xí)中積累一些知識儲備,視野開闊,易找出簡單的解題方法.本題考查到了復(fù)合函數(shù)求導(dǎo)公式,有一定的綜合性.
| 年級 | 高中課程 | 年級 | 初中課程 |
| 高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
| 高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
| 高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
| A. | 都表示一條直線和一個圓 | |
| B. | 都表示兩個點(diǎn) | |
| C. | 前者是兩個點(diǎn),后者是一直線和一個圓 | |
| D. | 前者是一條直線和一個圓,后者是兩個點(diǎn) |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
| A. | $\frac{{\sqrt{10}}}{4}$ | B. | $\frac{{\sqrt{5}}}{3}$ | C. | $\frac{{3\sqrt{5}}}{10}$ | D. | $\frac{{2\sqrt{2}}}{3}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
| A. | $\frac{5}{6}$ | B. | $\frac{1}{2}$ | C. | $\frac{1}{6}$ | D. | 1 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
國際學(xué)校優(yōu)選 - 練習(xí)冊列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com