【題目】已知函數(shù)
.
(1)討論函數(shù)
的單調(diào)性;
(2)若
,試討論函數(shù)
零點的個數(shù);
(3)在(2)的條件下,若
有兩個零點
,![]()
,求證:
.
【答案】(1)當
時,
在
上單調(diào)遞減;當
時,
在
上單調(diào)遞增,在
單調(diào)遞減;(2) 當
時,
恰有一個零點:當
時,
沒有零點;當
時,
有兩個零點;(3)見解析
【解析】
(1)求導后,分別在
和
兩種情況下討論導函數(shù)的符號,從而得到函數(shù)的單調(diào)性;(2)利用導數(shù)判斷出函數(shù)的單調(diào)性,求得函數(shù)最大值為
,分別在
,
,
三種情況下,結合零點存在定理判斷出零點個數(shù);(3)根據(jù)零點的定義可求得
,令
,
,可將
整理為
;令
,
,可求得
,結合
即可證得結論.
(1)由題意得:![]()
當
時,
在
上恒成立
則
在
上單調(diào)遞減
當
時,若
,
,;若
,![]()
即
在
上單調(diào)遞增;在
上單調(diào)遞減
綜上所述:當
時,
在
上單調(diào)遞減;
當
時,
在
上單調(diào)遞增,在
單調(diào)遞減
(2)當
時,
,則![]()
令
,解得:![]()
當
時,
,則
在
上單調(diào)遞減
當
時,
,則
在
上單調(diào)遞增
![]()
①當
,即
時,當且僅當
時,
,
恰有一個零點;
②當
,即
時,
恒成立,
沒有零點:
③當
,即
時,
,
,
,
有兩個零點
綜上:當
時,
恰有一個零點:當
時,
沒有零點;當
時,
有兩個零點
(3)證明:
由題意知:
,即
![]()
記
,
,則
,故![]()
,![]()
記函數(shù)
,![]()
則
在
上單調(diào)遞增
當
時,![]()
由(2)知
,![]()
又
![]()
![]()
科目:高中數(shù)學 來源: 題型:
【題目】如圖,已知矩形ABCD所在平面垂直于直角梯形ABPE所在平面于直線AB,且AB
BP
2,AD=AE=1,AE⊥AB,且AE∥BP.
![]()
(1)求平面PCD與平面ABPE所成的二面角的余弦值;
(2)線段PD上是否存在一點N,使得直線BN與平面PCD所成角的正弦值等于
?若存在,試確定點N的位置;若不存在,請說明理由.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】在平面直角坐標系
中,直線
的參數(shù)方程為
(
為參數(shù)).以坐標原點為極點,
軸的非負半軸為極軸且取相同的單位長度建立極坐標系,圓
的極坐標方程為
.
(1)求直線
的普通方程與圓
的直角坐標方程;
(2)設動點
在圓
上,動線段
的中點
的軌跡為
,
與直線
交點為
,且直角坐標系中,
點的橫坐標大于
點的橫坐標,求點
的直角坐標.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】
是亞太區(qū)域國家與地區(qū)加強多邊經(jīng)濟聯(lián)系、交流與合作的重要組織,其宗旨和目標是“相互依存、共同利益,堅持開放性多邊貿(mào)易體制和減少區(qū)域間貿(mào)易壁壘.”2017年
會議于11月10日至11日在越南峴港舉行.某研究機構為了了解各年齡層對
會議的關注程度,隨機選取了100名年齡在
內(nèi)的市民進行了調(diào)查,并將結果繪制成如圖所示的頻率分布直方圖(分組區(qū)間分別為
,
,
,
,
).
![]()
(1)求選取的市民年齡在
內(nèi)的人數(shù);
(2)若從第3,4組用分層抽樣的方法選取5名市民進行座談,再從中選取2人參與
會議的宣傳活動,求參與宣傳活動的市民中至少有一人的年齡在
內(nèi)的概率.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】近年來,隨著互聯(lián)網(wǎng)的發(fā)展,諸如“滴滴打車”“神州專車”等網(wǎng)約車服務在我國各城市迅猛發(fā)展,為人們出行提供了便利,但也給城市交通管理帶來了一些困難.為掌握網(wǎng)約車在
省的發(fā)展情況,
省某調(diào)查機構從該省抽取了5個城市,分別收集和分析了網(wǎng)約車的
,
兩項指標數(shù)
,數(shù)據(jù)如下表所示:
城市1 | 城市2 | 城市3 | 城市4 | 城市5 | |
| 2 | 4 | 5 | 6 | 8 |
| 3 | 4 | 4 | 4 | 5 |
經(jīng)計算得:
,
,
.
(1)試求
與
間的相關系數(shù)
,并利用
說明
與
是否具有較強的線性相關關系(若
,則線性相關程度很高,可用線性回歸模型擬合);
(2)建立
關于
的回歸方程,并預測當
指標數(shù)為7時,
指標數(shù)的估計值;
(3)若城市的網(wǎng)約車
指標數(shù)
落在區(qū)間
之外,則認為該城市網(wǎng)約車數(shù)量過多,會對城市交通管理帶來較大的影響,交通管理部門將介入進行治理,直至
指標數(shù)
回落到區(qū)間
之內(nèi).現(xiàn)已知2018年11月該城市網(wǎng)約車的
指標數(shù)為13,問:該城市的交通管理部門是否要介入進行治理?試說明理由.
附:相關公式:
,
,
.
參考數(shù)據(jù):
,
.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】如圖,在三棱錐
中,
,
,
為
的中點,
為
的中點,且
為正三角形.
![]()
(1)求證:
平面
;
(2)若
,三棱錐
的體積為1,求點
到平面
的距離.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】某險種的基本保費為a(單位:元),繼續(xù)購買該險種的投保人稱為續(xù)保人,續(xù)保人本年度的保費與其上年度出險次數(shù)的關聯(lián)如下:
上年度出險次數(shù) | 0 | 1 | 2 | 3 | 4 | ≥5 |
保費 | 0.85a | a | 1.25a | 1.5a | 1.75a | 2a |
隨機調(diào)查了該險種的200名續(xù)保人在一年內(nèi)的出險情況,得到如下統(tǒng)計表:
出險次數(shù) | 0 | 1 | 2 | 3 | 4 | ≥5 |
頻數(shù) | 60 | 50 | 30 | 30 | 20 | 10 |
(1)記A為事件:“一續(xù)保人本年度的保費不高于基本保費”,求P(A)的估計值;
(2)記B為事件:“一續(xù)保人本年度的保費高于基本保費但不高于基本保費的160%”,求P(B)的估計值;
(3)求續(xù)保人本年度平均保費的估計值.
查看答案和解析>>
國際學校優(yōu)選 - 練習冊列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com