欧美日韩黄网欧美日韩日B片|二区无码视频网站|欧美AAAA小视频|久久99爱视频播放|日本久久成人免费视频|性交黄色毛片特黄色性交毛片|91久久伊人日韩插穴|国产三级A片电影网站|亚州无码成人激情视频|国产又黄又粗又猛又爽的

3.已知關(guān)于x的不等式kx2-2x+6k<0(k≠0),
(1)若不等式的解集為{x|x<-3或x>-2},
(2)若不等式的解集為R,求k的取值范圍.

分析 (1)根據(jù)一元二次不等式的解法,二次函數(shù)的性質(zhì),可得 x1=-3,x2=-2是方程kx2-2x+6k=0的兩根,利用韋達(dá)定理求得k的值.
(2)由題意利用二次函數(shù)的性質(zhì),求得k的取值范圍.

解答 解 (1)∵關(guān)于x的不等式kx2-2x+6k<0(k≠0)的解集為{x|x<-3或x>-2},
∴x1=-3,x2=-2是方程kx2-2x+6k=0的兩根,所以x1+x2=$\frac{2}{k}$=-5,∴k=-$\frac{2}{5}$.
(2)若不等式的解集為R,即kx2-2x+6k<0恒成立,
則滿足$\left\{\begin{array}{l}{k<0}\\{△=4-2{4k}^{2}<0}\end{array}\right.$,求得k<-$\frac{\sqrt{6}}{6}$.

點(diǎn)評(píng) 本題主要考查一元二次不等式的解法,二次函數(shù)的性質(zhì),函數(shù)的恒成立問題,屬于基礎(chǔ)題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

13.曲線f(x)=$\frac{x-2sinx}{2cosx}$(-$\frac{π}{2}$<x<$\frac{π}{2}$)在點(diǎn)(0,f(0))處的切線方程為x+2y=0.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

14.在△ABC中,“sinA≤sinB“是”A≤B“的(  )
A.充要條件B.充分不必要條件
C.必要不充分條件D.既不充分也不必要條件

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

11.從圓x2-2x+y2-2y+1=0外一點(diǎn)P(3,2)向這個(gè)圓作切線,切點(diǎn)為Q,則切線段PQ=2.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

18.設(shè)l,m,n為三條不同的直線,α,β為兩個(gè)不同的平面,給出下列五個(gè)判斷:
①若l⊥α,m⊥l,m⊥β則α⊥β;
②若m?β,n是l在β內(nèi)的射影,n⊥m,則m⊥l;
③底面是等邊三角形,側(cè)面都是等腰三角形的三棱錐是正三棱錐;
④若球的表面積擴(kuò)大為原來(lái)的16倍,則球的體積擴(kuò)大為原來(lái)的32倍;
⑤若圓x2+y2=4上恰有3個(gè)點(diǎn)到直線:l:y=x+b的距離為1,則b=$\sqrt{2}$
其中正確的為①②.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

8.已知△ABC的三個(gè)內(nèi)角A、B、C所對(duì)的邊分別為a,b,c向量$\overrightarrow{m}$=(4,-1),$\overrightarrow{n}$=(cos2$\frac{A}{2}$,cos2A),且$\overrightarrow{m}•\overrightarrow{n}$=$\frac{7}{2}$
(Ⅰ)求角A的大小;
(Ⅱ)若a=$\sqrt{3}$,b=c時(shí),求△ABC的面積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

15.已知函數(shù)f(x)=ax2+x-a,a∈R.
(1)若函數(shù)f(x)有最大值$\frac{17}{8}$,求實(shí)數(shù)a的值;
(2)當(dāng)a=-2時(shí),解不等式f(x)>1.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

12.已知直線l1的傾斜角α1=30°,直線l1與l2平行,則直線l2的斜率k=( 。
A.$\sqrt{3}$B.$\frac{{\sqrt{3}}}{3}$C.$\frac{1}{2}$D.$\frac{{\sqrt{3}}}{2}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

13.已知各項(xiàng)都為正數(shù)的等比數(shù)列{an}的前n項(xiàng)和為Sn,數(shù)列{bn}的通項(xiàng)公式bn=$\left\{\begin{array}{l}{n,n為偶數(shù)}\\{n+1,n為奇數(shù)}\end{array}\right.$(n∈N*),若S3=b5+1,且b4是a2與a4的等比中項(xiàng).
(Ⅰ)求數(shù)列{an}的通項(xiàng)公式;
(Ⅱ)求數(shù)列{an•bn}的前2n項(xiàng)和T2n

查看答案和解析>>

同步練習(xí)冊(cè)答案