欧美日韩黄网欧美日韩日B片|二区无码视频网站|欧美AAAA小视频|久久99爱视频播放|日本久久成人免费视频|性交黄色毛片特黄色性交毛片|91久久伊人日韩插穴|国产三级A片电影网站|亚州无码成人激情视频|国产又黄又粗又猛又爽的

20.設(shè)集合A={0,1,2,4},B={x∈R|1<x≤4},則A∩B=( 。
A.{1,2,3,4}B.{2,3,4}C.{2,4}D.{x|1<x≤4}

分析 由A與B,求出兩集合的交集即可.

解答 解:∵A={0,1,2,4},B={x∈R|1<x≤4},
∴A∩B={2,4},
故選:C.

點(diǎn)評(píng) 此題考查了交集及其運(yùn)算,熟練掌握交集的定義是解本題的關(guān)鍵.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

10.某聯(lián)歡晚會(huì)舉行抽獎(jiǎng)活動(dòng),舉辦方設(shè)置了甲、乙兩種抽獎(jiǎng)方案,方案甲的中獎(jiǎng)率為$\frac{2}{3}$,中獎(jiǎng)可以獲得2分;方案乙的中獎(jiǎng)率為$\frac{2}{5}$,中獎(jiǎng)可以獲得3分;未中獎(jiǎng)則不得分.每人有且只有一次抽獎(jiǎng)機(jī)會(huì),每次抽獎(jiǎng)中獎(jiǎng)與否互不影響,晚會(huì)結(jié)束后憑分?jǐn)?shù)兌換獎(jiǎng)品.
(1)若小明選擇方案甲抽獎(jiǎng),小紅選擇方案乙抽獎(jiǎng),記他們的累計(jì)得分為X,求X≤3的概率;
(2)若小明、小紅兩人都選擇方案甲或都選擇方案乙進(jìn)行抽獎(jiǎng),分別求兩種方案下小明、小紅累計(jì)得分的分布列,并指出他們選擇何種方案抽獎(jiǎng),累計(jì)得分的數(shù)學(xué)期望較大?

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

11.已知f(x)是定義在R上的函數(shù),且f(2-x)=-f(2+x),f(x+2)=-f(x).給出下列命題:
①f(0)=0;            
②函數(shù)f(x)是周期函數(shù),并且周期為4;
③函數(shù)f(x)是奇函數(shù);   
④函數(shù)f(x)的圖象關(guān)于y軸對(duì)稱(chēng);
⑤函數(shù)f(x)的圖象關(guān)于點(diǎn)(2,0)成中心對(duì)稱(chēng).
其中所有正確命題的序號(hào)為①②③⑤(填寫(xiě)所有正確命題的序號(hào))

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

8.已知α、β是兩個(gè)平面,m,n是α、β外的兩條直線,給出四個(gè)論斷:①m⊥n;②α⊥β;③n⊥β;④m⊥α.以其中三個(gè)為條件,余下的一個(gè)為結(jié)論,能組成正確命題的個(gè)數(shù)為2.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

15.若f(x)是偶函數(shù),其定義域?yàn)椋?∞,+∞),且在[0,+∞)是減函數(shù),則f(-$\frac{3}{2}$)與f(-a2-$\frac{3}{2}$)的大小關(guān)系是(  )
A.f(-$\frac{3}{2}$)≥f(-a2-$\frac{3}{2}$)B.f(-$\frac{3}{2}$)<f(-a2-$\frac{3}{2}$)C.f(-$\frac{3}{2}$)>f(-a2-$\frac{3}{2}$)D.f(-$\frac{3}{2}$)≤f(-a2-$\frac{3}{2}$)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

5.下列函數(shù)中,既是奇函數(shù)又是周期為π的周期函數(shù)的是( 。
A.y=|tanx|B.y=sin(2x+$\frac{π}{3}$)C.y=cos2xD.y=sinxcosx

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

12.已知圓C:(x-3)2+(y-4)2=9,直線l經(jīng)過(guò)圓C外一點(diǎn)P(2,0)且與圓C交于A,B兩點(diǎn).
(1)若$|{AB}|=4\sqrt{2}$,求直線l的方程;
(2)求三角形ABC面積的最大值及此時(shí)直線l的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

9.在直角坐標(biāo)系中,以原點(diǎn)為極點(diǎn),x軸的正半軸為極軸建立極坐標(biāo)系,已知圓C:ρ=2cosθ-2sinθ,直線l的參數(shù)方程為$\left\{\begin{array}{l}{x=t}\\{y=-1+2\sqrt{2}t}\end{array}\right.$(t為參數(shù)),直線l與圓C分別交于M、N,點(diǎn)P是圓C上不同于M、N的任意一點(diǎn).
(1)寫(xiě)出C的直角坐標(biāo)方程和l的普通方程;
(2)求△PMN面積的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

10.已知x,y都是正數(shù).
(1)若3x+2y=12,求xy的最大值;
(2)若x+2y=3,求$\frac{1}{x}+\frac{1}{y}$的最小值.

查看答案和解析>>

同步練習(xí)冊(cè)答案